| 研究生: |
沈婉婷 Shen, Wan-Ting |
|---|---|
| 論文名稱: |
探討前胸腺素在膀胱癌中調控HOTAIR的角色 Role of prothymosin α in the regulation of HOTAIR in bladder cancer |
| 指導教授: |
吳昭良
Wu, Chao-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 膀胱癌 、惡質症 、前胸腺素 、HOTAIR |
| 外文關鍵詞: | Prothymosin α, HOTAIR, bladder cancer, cachexia |
| 相關次數: | 點閱:102 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膀胱癌是台灣常見的癌症之一,雖然病症初期能透過手術切除及化療等方式進行治療,但後期病人的高復發率以及對於化療藥物產生抗藥性,使得治療相當困難。順鉑(cisplatin)是一種常見用來治療膀胱癌的藥物,但容易產生如惡質症(Cachexia)等嚴重的副作用。惡質症是一常見發生於癌症後期之疾病,其成因相當複雜,其症狀為體重下降、肌肉及脂肪的流失等,進而影響病人的生活品質及治療效果。HOTAIR是一種長鏈非編碼核苷酸(Long noncoding RNA, LncRNA) ,在多種癌症中都有過量表現的情形,然而其在膀胱癌中的角色仍不清楚。前胸腺素(Prothymosin α, ProT)是一種高度酸性的小分子核蛋白,且過量表現在許多癌症中。在先前的文獻及實驗室發表的結果中顯示,ProT會藉由調控NF-κB的乙醯化以增加其穩定性,並且在HOTAIR的啟動子上有NF-κB 的結合位點,因此我們推測ProT會透過增加NF-κB的活性,進而促進 HOTAIR的表現而影響腫瘤的生長。本研究發現在膀胱癌的臨床檢體中,ProT及HOTAIR在腫瘤組織都具有高表現量,並透過細胞實驗證實ProT會透過NF-κB調控HOTAIR的表現。利用順鉑對細胞處理也發現其會刺激EGFR、ProT及HOTAIR的表現。此外我們利用CRISPR干擾(CRISPRi)技術降低小鼠膀胱癌細胞(MBT-2)的HOTAIR基因表現後,可有效提升細胞對順鉑的敏感性。動物實驗的結果更發現相較於控制組,HOTAIR低表現的MBT-2細胞於C3H/HeN小鼠背上形成的腫瘤較小以及對於順鉑治療後所產生的惡質症的症狀也有所減輕。總結來說,我們的研究結果發現ProT-NF-κB -HOTAIR在抗藥性和惡質症的產生扮演著重要角色; 另外,HOTAIR在未來或許是改善惡質症之症狀的一個重要治療標的。
Prothymosin α (ProT), a small, highly acidic protein, has various biological functions and plays an important role in cancer progression. HOTAIR is an oncogenic long noncoding RNA, which is overexpressed in many cancers. Bladder cancer is a common malignancy in Taiwan. Cisplatin, a chemotherapeutic agent for bladder cancer, may induce severe side effects, including cachexia. Patients with late-stage cancers are often accompanied with cachexia, which causes losses of body weight and fat, as well as muscle atrophy. We have previously demonstrated that ProT can increase the acetylation and stability of nuclear factor-κB (NF-κB). Moreover, it has been shown that HOTAIR is upregulated by NF-κB and plays an important role in chemoresistance. Therefore, we hypothesized that ProT may be a regulator of HOTAIR through activating NF-κB, thereby contributing to the progression of cachexia and chemoresistance in bladder cancer. In the present study, we found that the expression levels of ProT and HOTAIR were higher in tumor parts compared with those in their normal counterparts in clinical bladder tumor tissues. There was a positive correlation between ProT and HOTAIR expression. Furthermore, ProT upregulated HOTAIR expression through enhancing the NF-κB activity in bladder cancer cells. Silencing of HOTAIR using CRISPR interference sensitized murine MBT-2 bladder cancer cells to cisplatin-induced cell death. Inhibition of HOTAIR expression decreased tumor growth in the MBT-2 syngeneic bladder tumor model. Concomitantly, cisplatin-induced cachexia was ameliorated in HOTAIR-silenced mice. Taken together, our results suggest that the ProT-NF-κB-HOTAIR axis may play a pivotal role in the development of chemoresistance and cachexia in bladder cancer and that HOTAIR may be a potential therapeutic target for cachexia.
Argiles, J. M., Busquets, S., & Lopez-Soriano, F. J. (2011). Anti-inflammatory therapies in cancer cachexia. European Journal of Pharmacology, 668 Suppl 1, S81-86.
Argiles, J. M., Busquets, S., Stemmler, B., & Lopez-Soriano, F. J. (2014). Cancer cachexia: understanding the molecular basis. Nature Reviews: Cancer, 14, 754-762.
Bryan, R. T., Collins, S. I., Daykin, M. C., Zeegers, M. P., Cheng, K. K., Wallace, D. M., & Sole, G. M. (2010). Mechanisms of recurrence of Ta/T1 bladder cancer. Annals of the Royal College of Surgeons of England, 92, 519-524.
Chiyomaru, T., Yamamura, S., Fukuhara, S., Yoshino, H., Kinoshita, T., Majid, S., Saini, S., Chang, I., Tanaka, Y., Enokida, H., Seki, N., Nakagawa, M., Dahiya, R. (2013). Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PloS One, 8, e70372.
Davies, R. L., Grosse, V. A., Kucherlapati, R., & Bothwell, M. (1980). Genetic analysis of epidermal growth factor action: assignment of human epidermal growth factor receptor gene to chromosome 7. Proceedings of the National Academy of Sciences of the United States of America, 77, 4188-4192.
Diaz-Granados, N., Howe, K., Lu, J., & McKay, D. M. (2000). Dextran sulfate sodium-induced colonic histopathology, but not altered epithelial ion transport, is reduced by inhibition of phosphodiesterase activity. American Journal of Pathology, 156, 2169-2177.
Ding, L., Getz, G., Wheeler, D. A., Mardis, E. R., McLellan, M. D., Cibulskis, K., Wilson, R. K. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 455, 1069-1075.
Emmanouilidou, A., Karetsou, Z., Tzima, E., Kobayashi, T., & Papamarcaki, T. (2013). Knockdown of prothymosin alpha leads to apoptosis and developmental defects in zebrafish embryos. Biochemistry and Cell Biology, 91, 325-332.
Ferguson, K. M., Berger, M. B., Mendrola, J. M., Cho, H. S., Leahy, D. J., & Lemmon, M. A. (2003). EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Molecular Cell, 11, 507-517.
Freeman-Cook, K. D., Autry, C., Borzillo, G., Gordon, D., Barbacci-Tobin, E., Bernardo, V., Morris, J. (2010). Design of selective, ATP-competitive inhibitors of Akt. Journal of Medicinal Chemistry, 53, 4615-4622.
Ge, X. S., Ma, H. J., Zheng, X. H., Ruan, H. L., Liao, X. Y., Xue, W. Q., Jia, W. H. (2013). HOTAIR, a prognostic factor in esophageal squamous cell carcinoma, inhibits WIF-1 expression and activates Wnt pathway. Cancer Science, 104, 1675-1682.
Grier, D. G., Thompson, A., Kwasniewska, A., McGonigle, G. J., Halliday, H. L., & Lappin, T. R. (2005). The pathophysiology of HOX genes and their role in cancer. Journal of Pathology, 205, 154-171.
Haritos, A. A., Goodall, G. J., & Horecker, B. L. (1984). Prothymosin alpha: isolation and properties of the major immunoreactive form of thymosin alpha 1 in rat thymus. Proceedings of the National Academy of Sciences of the United States of America, 81, 1008-1011.
Hsu, S. C., Miller, S. A., Wang, Y., & Hung, M. C. (2009). Nuclear EGFR is required for cisplatin resistance and DNA repair. American Journal of Translational Research, 1, 249-258.
Hui, Z., & Xianglin, M. (2016). Association of HOTAIR expression with PI3K/Akt pathway activation in adenocarcinoma of esophagogastric junction. Open medicine (Warsaw, Poland), 11, 36-40.
Ioannou, K., Samara, P., Livaniou, E., Derhovanessian, E., & Tsitsilonis, O. E. (2012). Prothymosin alpha: a ubiquitous polypeptide with potential use in cancer diagnosis and therapy. Cancer Immunology, Immunotherapy, 61, 599-614.
Ishigaki, Y., Katagiri, H., Yamada, T., Ogihara, T., Imai, J., Uno, K., Oka, Y. (2005). Dissipating excess energy stored in the liver is a potential treatment strategy for diabetes associated with obesity. Diabetes, 54, 322-332.
Kaplan, A. L., Litwin, M. S., & Chamie, K. (2014). The future of bladder cancer care in the USA. Nature Reviews Urology, 11, 59-62.
Konkimalla, V. B., Kaina, B., & Efferth, T. (2008). Role of transporter genes in cisplatin resistance. In Vivo, 22, 279-283.
Li, D., Feng, J., Wu, T., Wang, Y., Sun, Y., Ren, J., & Liu, M. (2013). Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. American Journal of Pathology, 182, 64-70.
Lin, L., Chen, K., Abdel Khalek, W., Ward, J. L., Yang, H., Chabi, B., Tong, Q. (2014). Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3. PloS One, 9, e85636.
Liu, X. H., Sun, M., Nie, F. Q., Ge, Y. B., Zhang, E. B., Yin, D. D., Wang, Z. X. (2014). Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Molecular Cancer, 13, 92.
Ma, M. Z., Li, C. X., Zhang, Y., Weng, M. Z., Zhang, M. D., Qin, Y. Y., Quan, Z. W. (2014). Long non-coding RNA HOTAIR, a c-Myc activated driver of malignancy, negatively regulates miRNA-130a in gallbladder cancer. Molecular Cancer, 13, 156.
Ma, X., Becker Buscaglia, L. E., Barker, J. R., & Li, Y. (2011). MicroRNAs in NF-kappaB signaling. Journal of Molecular Cell Biology, 3, 159-166.
Mendes, M. C., Pimentel, G. D., Costa, F. O., & Carvalheira, J. B. (2015). Molecular and neuroendocrine mechanisms of cancer cachexia. Journal of Endocrinology, 226, R29-43.
Michaelis, M., Bliss, J., Arnold, S. C., Hinsch, N., Rothweiler, F., Deubzer, H. E., Cinatl, J., Jr. (2008). Cisplatin-resistant neuroblastoma cells express enhanced levels of epidermal growth factor receptor (EGFR) and are sensitive to treatment with EGFR-specific toxins. Clinical Cancer Research, 14, 6531-6537.
Morley, J. E., Thomas, D. R., & Wilson, M. M. (2006). Cachexia: pathophysiology and clinical relevance. American Journal of Clinical Nutrition, 83, 735-743.
Moro, C., Uchiyama, J., & Chess-Williams, R. (2011). Urothelial/lamina propria spontaneous activity and the role of M3 muscarinic receptors in mediating rate responses to stretch and carbachol. Urology, 78, 1442.e1449-1415.
Onesti, J. K., & Guttridge, D. C. (2014). Inflammation based regulation of cancer cachexia. BioMed Research International, 2014, 168407.
Ortega-Molina, A., Efeyan, A., Lopez-Guadamillas, E., Munoz-Martin, M., Gomez-Lopez, G., Canamero, M., Serrano, M. (2012). Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metabolism, 15, 382-394.
Ozes, A. R., Miller, D. F., Ozes, O. N., Fang, F., Liu, Y., Matei, D., Nephew, K. P. (2016). NF-kappaB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer. Oncogene, 35, 5350-5361.
Peng, M., Huang, Y., Tao, T., Peng, C. Y., Su, Q., Xu, W., Yang, X. (2016). Metformin and gefitinib cooperate to inhibit bladder cancer growth via both AMPK and EGFR pathways joining at Akt and Erk. Scientific Reports, 6, 28611.
Petruzzelli, M., Schweiger, M., Schreiber, R., Campos-Olivas, R., Tsoli, M., Allen, J., Wagner, E. F. (2014). A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metabolism, 20, 433-447.
Petruzzelli, M., & Wagner, E. F. (2016). Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes and Development, 30, 489-501.
Porporato, P. E. (2016). Understanding cachexia as a cancer metabolism syndrome. Oncogenesis, 5, e200.
Rohm, M., Schafer, M., Laurent, V., Ustunel, B. E., Niopek, K., Algire, C., Herzig, S. (2016). An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nature Medicine, 22, 1120-1130.
Rosenberg, B. (1985). Fundamental studies with cisplatin. Cancer, 55, 2303-l2306.
Shiwa, M., Nishimura, Y., Wakatabe, R., Fukawa, A., Arikuni, H., Ota, H., Yamori, T. (2003). Rapid discovery and identification of a tissue-specific tumor biomarker from 39 human cancer cell lines using the SELDI ProteinChip platform. Biochemical and Biophysical Research Communications, 309, 18-25.
Sordella, R., Bell, D. W., Haber, D. A., & Settleman, J. (2004). Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science, 305, 1163-1167.
Su, B. H., Tseng, Y. L., Shieh, G. S., Chen, Y. C., Shiang, Y. C., Wu, P., Li, K. J., Yen, T. H., Shiau, A. L., Wu, C. L. (2013). Prothymosin alpha overexpression contributes to the development of pulmonary emphysema. Nature Communications, 4, 1906.
Tsai, M. C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J. K., Lan, F., Chang, H. Y. (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329, 689-693.
Tsai, Y. S., Jou, Y. C., Lee, G. F., Chen, Y. C., Shiau, A. L., Tsai, H. T., Wu, C. L., Tzai, T. S. (2009). Aberrant prothymosin-alpha expression in human bladder cancer. Urology, 73, 188-192.
Vareli, K., Tsolas, O., & Frangou-Lazaridis, M. (1996). Regulation of prothymosin alpha during the cell cycle. European Journal of Biochemistry, 238, 799-806.
Wang, J., Qin, X., Zhang, Z., Chen, M., Wang, Y., & Gao, B. (2014). Crotoxin suppresses the tumorigenic properties and enhances the antitumor activity of Iressa(R) (gefinitib) in human lung adenocarcinoma SPCA1 cells. Mol Med Rep, 10, 3009-3014.
Wang, Y., Wang, H., Song, T., Zou, Y., Jiang, J., Fang, L., & Li, P. (2015). HOTAIR is a potential target for the treatment of cisplatinresistant ovarian cancer. Molecular Medicine Reports, 12, 2211-2216.
Yamamoto, H., Shigematsu, H., Nomura, M., Lockwood, W. W., Sato, M., Okumura, N., Gazdar, A. F. (2008). PIK3CA mutations and copy number gains in human lung cancers. Cancer Research, 68, 6913-6921.
Yan, T. H., Lu, S. W., Huang, Y. Q., Que, G. B., Chen, J. H., Chen, Y. P., Jiang, J. H. (2014). Upregulation of the long noncoding RNA HOTAIR predicts recurrence in stage Ta/T1 bladder cancer. Tumour Biology, 35, 10249-10257.
Yarden, Y., & Schlessinger, J. (1987). Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry, 26, 1443-1451.
Yavuzsen, T., Davis, M. P., Walsh, D., LeGrand, S., & Lagman, R. (2005). Systematic review of the treatment of cancer-associated anorexia and weight loss. Journal of Clinical Oncology, 23, 8500-8511.
Yu, Y., Lv, F., Liang, D., Yang, Q., Zhang, B., Lin, H., Wang, X., Qian, G., Xu, J., You, W. (2017). HOTAIR may regulate proliferation, apoptosis, migration and invasion of MCF-7 cells through regulating the P53/Akt/JNK signaling pathway. Biomedicine and Pharmacotherapy, 90, 555-561.
Zhang, H., Berezov, A., Wang, Q., Zhang, G., Drebin, J., Murali, R., & Greene, M. I.
(2007). ErbB receptors: from oncogenes to targeted cancer therapies. Journal of
Clinical Investigation, 117, 2051-2058.
校內:2023-01-30公開