簡易檢索 / 詳目顯示

研究生: 林承巖
Lin, Cheng-Yen
論文名稱: 以γ相氧化鋁擔載鈣鈰氧化物催化甘油醚化之最佳化研究
Study on Optimization of Glycerol Oligomerization in Presence of γ-Alumina Supported Ca/Ce Mixed Oxides.
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 147
中文關鍵詞: 醚化反應γ相氧化鋁甘油二聚甘油三聚甘油反應曲面法
外文關鍵詞: Etherification, γ-Alumina, Glycerol, Response surface methodology, Diglycerol, Triglycerol
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自工業革命以來,石化燃料成為人類社會經濟成長、科技進步不可或缺的能源之一,石化燃料使用量大幅上升,使有限的石化燃料將消耗殆盡,更會造成環境的污染與破壞,因此,近年來各國都積極的尋找具備永續性、環保及低汙染的再生能源。在眾多再生能源中,生質柴油因其具生物可降解性、低毒性、釋放熱能高而備受關注。然而,隨著生質柴油被大量生產,造成了其主要副產物甘油在市場上受到了供需失衡的衝擊,導致其價格驟跌並影響到生質柴油產業。因此,當務之急應尋求甘油的高值化應用鞏固其價格,以穩定生質柴油產業市場。在許多甘油高值化應用中,因甘油醚化過程簡單且低危害性,且聚甘油可應用於個人護理用品、化妝品、食品加工業中,是極具經濟價值之製程。本研究使用Dean-Stark反應系統進行無溶劑之甘油醚化反應,以生成直鏈型二聚甘油與三聚甘油為目標。將氧化鋁以濕式含浸法改質,擔載鈣鈰作為催化甘油醚化反應之觸媒,使用XRD、FT-IR、SEM、BET及TGA等儀器分析觸媒特性,探討其改質參數,並測試其催化效果。另外使用實驗設計反應曲面法(RSM)最佳化甘油醚化反應,將最佳化條件之甘油醚化反應進行動力學分析,並計算出反應活化能。最後,將觸媒進行回收與再生程序,並與新鮮觸媒比較差異性,以探討觸媒之耐用性。經實驗篩選出最佳改質條件為鍛燒溫度650℃、鈣鈰比例3:1、含浸量9 mmol/g alumina,而改質後之觸媒能成功提升甘油醚化反應之甘油轉化率與直鏈型二聚甘油與三聚甘油之選擇率;並經由實驗設計法得到甘油醚化反應的最佳反應條件為反應溫度239℃、反應時間7.8小時、甘油觸媒比為2.2 wt%,可獲得85%之甘油轉化率、34%之二聚甘油產率及31.3%之三聚甘油產率,總選擇率可達76.1%。而觸媒反應三次後活性降低,甘油轉化率降至45.2%,二聚甘油與三聚甘油產率分別為33.9%與8.8%;再生觸媒則可達到89%之甘油轉化率、24.1%之二聚甘油產率與19.5%之三聚甘油產率。

    In this work, the solventless oligomerization of glycerol was studied and carried out in presence of calcium–cerium oxides supported on γ-alumina as catalyst. The catalysts were successfully prepared by the incipient wetness impregnation method using Ce(NO3)3 and Ca(NO3)2 precursor solutions as well as γ-alumina as the support, followed by calcination at 650℃ for 6 hours. Various instruments including BET, TGA, XRD, SEM, and ICP-OES analyses were employed for characterization of these catalysts. Typically, the etherification reactions of glycerol, as both reactant and solvent, were carried out from 220℃ to 260℃ in nitrogen atmosphere. Furthermore, the design-of-experiment (DOE) principle, mainly response surface methodology (RSM) mainly coupled with central composite design (CCD), was attempted to optimize this catalytic etherification process of glycerol. The combined yield of diglycerol and triglycerol in linear forms was adopted as the response factor. Under the optimal reaction conditions, near 80% glycerol could be converted to polyglycerol after 8h using Ca-Ce/γ-alumina catalysts, prepared from mixed solutions of Ca+2/Ce+3 in which the molar ratio of Ca/Ce is 3/1, with a loading as 2 wt% based on the initial mass of glycerol. A selectivity of 89% for di-glycerol and tri-glycerol in linear form could be achieved, accordingly.

    摘要...II Abstract...III 致謝...XV 目錄...XVI 表目錄...XXII 圖目錄...XXIV 第一章 緒論...1 1.1 前言...1 1.2 研究動機與目的...5 第二章 文獻回顧...8 2.1 甘油介紹...8 2.1.1 甘油之物理化學性質...8 2.1.2 甘油之歷史發展...9 2.1.3 甘油來源...11 2.1.3.1 鹼性催化轉酯化反應...12 2.1.3.2 酸性催化轉酯化反應...14 2.1.3.3 酶催化轉酯化反應...14 2.1.3.4 皂化反應...15 2.1.3.5 水解...15 2.1.4 粗甘油之純化...16 2.1.5 甘油之市場與應用...17 2.1.5.1 甘油之市場趨勢...17 2.1.5.2 甘油之應用...18 2.2 聚甘油之介紹...20 2.2.1 聚甘油之物理化學性質...20 2.2.2 聚甘油之來源...22 2.2.3 聚甘油之市場與應用...25 2.2.4 聚甘油之分析...26 2.2.4.1 層析法...26 2.2.4.2 出水量法...27 2.2.4.3 氧化還原滴定法...27 2.2.4.4 折射率法...28 2.3 甘油醚化反應觸媒使用與反應機制...29 2.3.1 酸性均相觸媒...29 2.3.2 酸性非均相觸媒...30 2.3.3 鹼性均相觸媒...31 2.3.4 鹼性非均相觸媒...32 2.4 氧化鋁之性質與觸媒應用...34 2.5 實驗設計(Design of Experiment, DOE)...36 2.5.1 實驗設計之簡史...36 2.5.2 實驗設計之基本原則與流程...37 2.5.3 實驗設計之種類...38 2.5.3.1 因子設計法(factorial design)...38 2.5.3.2 反應曲面法(Response surface methodology, RSM)...40 2.5.3.3 田口設計法(Taguchi method)...44 2.6 文獻回顧...46 第三章 實驗儀器與研究方法...49 3.1 實驗架構...49 3.2 實驗藥品...50 3.3 實驗設備...51 3.4 實驗方法...52 3.4.1 觸媒特性與聚甘油產率分析...52 3.4.1.1 X光繞射分析儀 (X-ray Diffraction Analyzer, XRD)...52 3.4.1.2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)...53 3.4.1.3 能量散佈X-射線光譜儀 (Energy-dispersive X-ray spectroscopy, EDS)...53 3.4.1.4 比表面積與孔隙分佈分析儀 (Specific Surface Area & Pore Size Distribution Analyzer, BET)...54 3.4.1.5 傅立葉紅外線光譜儀 (Fourier Transform Infrared Spectrometer , FTIR)...55 3.4.1.6 熱重分析儀 (Thermogravimetric analysis, TGA)...56 3.4.1.7 全自動程序升溫化學吸附儀 (Chemisorption Analyzer)...57 3.4.1.8 感應耦合電漿放射光譜儀 (Inductively coupled plasma optical emission spectrometer, ICP-OES)...58 3.4.1.9 觸媒鹼度測試...58 3.4.1.10 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS)...59 3.4.1.11 聚甘油產率分析...60 3.4.2 含浸法改質觸媒...61 3.4.3 觸媒催化活性測試...62 3.4.3.1 高溫反應裝置...62 3.4.3.2 甘油醚化反應...63 3.4.3.3 聚甘油產率分析方法...63 3.4.3.4 觸媒回收與再生...64 3.4.3.5 矽烷化...64 3.4.4 反應曲面實驗設計法...66 第四章 結果與討論...69 4.1 聚甘油產物定量分析...69 4.2 氧化鋁觸媒之改質與鑑定...73 4.2.1 不同鍛燒溫度對觸媒性質與催化活性之影響...73 4.2.1.1 鍛燒溫度對於氧化鋁晶相之影響...73 4.2.1.2 鍛燒溫度對於分解含浸活性物之影響...74 4.2.1.3 XRD晶型分析...76 4.2.1.4 FT-IR圖譜分析...77 4.2.1.5 SEM與EDS分析...79 4.2.1.6 觸媒鹼度測試...80 4.2.1.7 不同鍛燒溫度對於觸媒活性物瀝濾之測試...81 4.2.1.8 鍛燒溫度對於反應之影響...82 4.2.2 不同鈣鈰比例對觸媒性質與催化活性之影響...83 4.2.2.1 XRD晶型分析...83 4.2.2.2 FT-IR圖譜分析...84 4.2.2.3 SEM與EDS分析...85 4.2.2.4 觸媒鹼度測試...87 4.2.2.5 不同鈣鈰比對於觸媒活性物瀝濾之測試...88 4.2.2.6 不同鈣鈰比對於反應之影響...89 4.2.3 不同含浸量對觸媒性質與催化活性之影響...90 4.2.3.1 XRD晶型分析...90 4.2.3.2 FT-IR圖譜分析...91 4.2.3.3 SEM與EDS分析...92 4.2.3.4 觸媒鹼度測試...93 4.2.3.5 不同含浸濃度對於觸媒活性物瀝濾之測試...93 4.2.3.6 不同含浸量對於反應之影響...94 4.2.4 比表面積與孔隙分佈分析儀分析(BET)...96 4.2.5 高解析電子能譜儀分析(XPS)...100 4.2.6 觸媒上金屬氧化物之分散性...102 4.3 實驗設計...104 4.3.1 前實驗...104 4.3.1.1 反應溫度對產率之影響...104 4.3.1.2 反應時間對產率之影響...105 4.3.1.3 甘油觸媒重量比對產率之影響...105 4.3.2 迴歸分析...106 4.3.3 變異數分析...110 4.3.4 最佳條件預測...112 4.3.5 模型驗證...113 4.4 反應動力學探討...114 4.4.1 反應動力學模型...114 4.4.2 反應活化能計算...119 4.5 觸媒之回收與再生...122 4.5.1 XRD晶型分析...122 4.5.2 TGA分析...123 4.5.3 FT-IR圖譜分析...123 4.5.4 SEM分析...125 4.5.5 BET分析...125 4.5.6 觸媒鹼度測試...127 4.5.7 回收觸媒之耐用性測試...127 第五章 結論與未來展望...129 5.1 結論...129 5.2 未來展望...130 參考文獻...131 附錄...143 附錄A...143 附錄B...146 附錄C...147

    Anitha, M., Kamarudin, S. K., Kofli, N. T. The potential of glycerol as a value-added commodity. Chemical Engineering Journal, 295, 119-130(2016)

    Anuar, M. R., Abdullah, A. Z. Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: a critical review. Renewable and Sustainable Energy Reviews, 58, 208-223(2016)

    Ayoub, M., Khayoon, M. S., Abdullah, A. Z. Synthesis of oxygenated fuel additives via the solventless etherification of glycerol. Bioresource technology, 112, 308-312(2012)

    Application to the selective etherification of glycerol to polyglycerols. Surface Science and Catalysis, 118, 895-902(1998)

    Bagnato, G., Iulianelli, A., Sanna, A., Basile, A. Glycerol production and transformation: a critical review with particular emphasis on glycerol reforming reaction for producing hydrogen in conventional and membrane reactors. Membranes, 7(2), 17 (2017)

    Balat, M., Balat, H. Progress in biodiesel processing. Applied Energy, 87(6), 1815-1835(2010)

    Banković-Ilić, I. B., Stamenković, O. S., Veljković, V. B. Biodiesel production from non-edible plant oils., Renewable and Sustainable Energy Reviews, 16(6), 3621-3647(2012)

    Barrault, J., Clacens, J. M., Pouilloux, Y. Selective oligomerization of glycerol over mesoporous catalysts. Topics in catalysis, 27(1-4), 137-142(2004)

    Barrault, J., Pouilloux, Y., Clacens, J. M., Vanhove, C., Bancquart, S. Catalysis and fine chemistry. Catalysis Today, 75(1-4), 177-181(2002)

    Behrens, H., Mieth, G. Übersichtsartikel. Synthese, Charakterisierung und Applikation von Polyglycerolen und Polyglycerolfettsäureestern. Food/Nahrung, 28(8), 815-835(1984)

    Cassel, S., Debaig, C., Benvegnu, T., Chaimbault, P., Lafosse, M., Plusquellec, D., Rollin, P. Original synthesis of linear, branched and cyclic oligoglycerol standards. European Journal of Organic Chemistry, 5, 875-896(2001)

    Charles, G., Clacens, J. M., Pouilloux, Y., Barrault, J. Préparation de diglycérol et triglycérol par polymérisation directe du glycérol en présence de catalyseurs mésoporeux basiques. Oléagineux, Corps gras, Lipides, 10(1), 74-82(2003)

    Clacens, J. M., Pouilloux, Y., Barrault, J. Selective etherification of glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous catalysts. Applied Catalysis A: General, 227(1-2), 181-190(2002)

    Coskun, O. Separation techniques: chromatography. Northern clinics of Istanbul, 3(2), 156(2016)

    Clacens, J. M., Pouilloux, Y., Barrault, J., Linares, C., & Goldwasser, M. Mesoporous basic catalysts: comparison with alkaline exchange zeolites (basicity and porosity).
    Calow, C. A., & Porter, I. T. The solid state bonding of nickel to alumina. Journal of Materials Science, 6(2), 156-163(1971)

    Dean, A., Voss, D., Draguljić, D. Design and analysis of experiments. Springer, New York, 1, (1999)

    Demirbas, A. Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50(1), 14-34(2009)

    Din, N. S. M. N. M., Bakar, Z. A., Soi, H. S., Idris, Z. A. I. N. A. B., Kian, Y. S. Glycerol to polyglycerol: value-addition of biodiesel by-product. MPOB TT, (2010)

    Dougherty, C. Introduction to econometrics. Oxford University Press. (2011).

    Eshuis, J. J. W., Laan, J. A. M., Potman, R. P. Polymerization of glycerol using a zeolite catalyst. Zeolites, 3(17), 316(1996)

    Freddi, A., Salmon, M. Design Principles and Methodologies. Springer, (2018)

    García-Sancho, C., Moreno-Tost, R., Mérida-Robles, J. M., Santamaría-González, J., Jiménez-López, A., Torres, P. M. Etherification of glycerol to polyglycerols over MgAl mixed oxides. Catalysis today, 167(1), 84-90(2011)

    Garlapati, V. K., Shankar, U., Budhiraja, A. Bioconversion technologies of crude glycerol to value added industrial products. Biotechnology Reports, 9, 9-14(2016)

    Garti, N., Aserin, A., Zaidman, B. Polyglycerol esters: Optimization and techno‐economic evaluation. Journal of the American Oil Chemists' Society, 58(9), 878-883(1981)

    Gholami, Z., Abdullah, A. Z., Lee, K. T. Dealing with the surplus of glycerol production from biodiesel industry through catalytic upgrading to polyglycerols and other value-added products. Renewable and Sustainable Energy Reviews, 39, 327-341(2014)

    Gholami, Z., Abdullah, A. Z., Lee, K. T. Heterogeneously catalyzed etherification of glycerol to diglycerol over calcium–lanthanum oxide supported on MCM-41: A heterogeneous basic catalyst. Applied Catalysis A: General, 479, 76-86(2014)

    Gitlesen, C., Motzfeldt, K. The Melting Point of Alumina and Some Related. Acta Chemica Scandinavica, 19(3), 661-669(1965)

    Gupta, V. K., Tuohy, M. G. Biofuel and Biorefinery Technologies. Springer, Cham Heidelberg. (2015)

    Hejna, A., Kosmela, P., Formela, K., Piszczyk, Ł., Haponiuk, J. T. Potential applications of crude glycerol in polymer technology–Current state and perspectives. Renewable and Sustainable Energy Reviews, 66, 449-475(2016)

    Hu, S., Luo, X., Wan, C., Li, Y. Characterization of crude glycerol from biodiesel plants. Journal of agricultural and food chemistry, 60(23), 5915-5921 (2012)

    International Energy Agency (IEA), Biofuel production in 2018 compared to consumption in 2030 under the Sustainable Development Scenario, IEA, Paris, (2018)

    International Energy Agency (IEA), Oil Information 2019, IEA, Paris, (2019)

    Katryniok, B., Kimura, H., Skrzyńska, E., Girardon, J. S., Fongarland, P., Capron, M., Dumeignil, F. Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chemistry, 13(8), 1960-1979(2011)

    Krisnandi, Y. K., Eckelt, R., Schneider, M., Martin, A., Richter, M. Glycerol Upgrading over Zeolites by Batch‐Reactor Liquid‐Phase Oligomerization: Heterogeneous versus Homogeneous Reaction. ChemSusChem: Chemistry & Sustainability Energy & Materials, 1(10), 835-844(2008)

    Kumar, L. R., Yellapu, S. K., Tyagi, R. D., Zhang, X. A review on variation in crude glycerol composition, bio-valorization of crude and purified glycerol as carbon source for lipid production. Bioresource Technology, 122155(2019)

    Leofanti, G., Padovan, M., Tozzola, G., & Venturelli, B. Surface area and pore texture of catalysts. Catalysis Today, 41(1-3), 207-219(1998)

    Martin, A., Richter, M. Oligomerization of glycerol–a critical review. European Journal of Lipid Science and Technology, 113(1), 100-117(2011)

    Mbamalu, V. C. Glycerin and the market. Chattanooga, Tennessee. 14-46(2013)

    Medeiros, M. A., Araujo, M. H., Augusti, R., de Oliveira, L. C., Lago, R. M. Acid-catalyzed oligomerization of glycerol investigated by electrospray ionization mass spectrometry. Journal of the Brazilian Chemical Society, 20(9), 1667-1673(2009)

    Monteiro, M. R., Kugelmeier, C. L., Pinheiro, R. S., Batalha, M. O., da Silva César, A. Glycerol from biodiesel production: Technological paths for sustainability. Renewable and Sustainable Energy Reviews, 88, 109-122(2018)

    Montgomery, D. C. Design and analysis of experiments. John wiley & sons, (2017)
    Mota, C. J., Pinto, B. P., De Lima, A. L. Glycerol: a versatile renewable feedstock for the chemical industry. Springer, (2017)

    Nie, X., Meletis, E. I., Jiang, J. C., Leyland, A., Yerokhin, A. L., Matthews, A. Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis. Surface and Coatings Technology, 149(2-3), 245-251(2002)

    Nomanbhay, S., Hussein, R., Ong, M. Y. Sustainability of biodiesel production in Malaysia by production of bio-oil from crude glycerol using microwave pyrolysis: a review. Green Chemistry Letters and Reviews, 11(2), 135-157(2018)

    Ning, J., Shi, P., Jiang, M., Liu, C., & Li, X. Effect of Ce Doping on the Structure and Chemical Stability of Nano-α-Fe2O3. Nanomaterials, 9(7), 1039(2019).

    Ozawa, M., Kimura, M. Effect of cerium addition on the thermal stability of gamma alumina support. Journal of Materials Science Letters, 9, 291-293(1990)
    Pagliaro, M. Glycerol: The Renewable Platform Chemical. Elsevier, Amsterdam, Netherlands, 1-18(2017)

    Pagliaro, M., Rossi, M. Glycerol: properties and production. The future of glycerol, 20-21(2010)

    Pines, H., Haag, W. O. Alumina: Catalyst and support. I. Alumina, its intrinsic acidity and catalytic activity1. Journal of the American Chemical Society, 82(10), 2471-2483(1960)

    Pinto, A. C., Guarieiro, L. L., Rezende, M. J., Ribeiro, N. M., Torres, E. A., Lopes, W. A., Andrade, J. B. D. Biodiesel: an overview. Journal of the Brazilian Chemical Society, 16(6B), 1313-1330(2005)

    Parida, K. M., Pradhan, A. C., Das, J., & Sahu, N. Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method. Materials Chemistry and Physics, 113(1), 244-248(2009).

    Quispe, C. A., Coronado, C. J., Carvalho Jr, J. A. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and sustainable energy reviews, 27, 475-493(2013)

    Rahul, R., Satyarthi, J. K., Srinivas, D. Lanthanum and zinc incorporated hydrotalcites as solid base catalysts for biodiesel and biolubricants production. Indian Journal of Chemistry, 50A, 1017-1025(2011)

    Richter, M., Eckelt, R., Martin, A., Krisnandi, Y. K. Verfahren zur selektiven Herstellung von linearem Diglycerin. Chemie Ingenieur Technik, 80(10), 1573-1577(2008)

    Ruppert, A. M., Meeldijk, J. D., Kuipers, B. W., Erné, B. H., Weckhuysen, B. M. Glycerol etherification over highly active CaO‐based materials: New mechanistic aspects and related colloidal particle formation. Chemistry–A European Journal, 14(7), 2016-2024(2008)

    Rozita, Y., Brydson, R., & Scott, A. J. An investigation of commercial gamma-Al2O3 nanoparticles. Journal of Physics: Conference Series, 241(1), 012096(2010)

    San Kong, P., Aroua, M. K., Daud, W. M. A. W. Conversion of crude and pure glycerol into derivatives: a feasibility evaluation. Renewable and Sustainable Energy Reviews, 63, 533-555(2016)

    Sayoud, N., Vigier, K. D. O., Cucu, T., De Meulenaer, B., Fan, Z., Lai, J., ... & Jérôme, F. Homogeneously-acid catalyzed oligomerization of glycerol. Green Chemistry, 17(8), 4307-4314(2015)

    Singhabhandhu, A., Tezuka, T. A perspective on incorporation of glycerin purification process in biodiesel plants using waste cooking oil as feedstock. Energy, 35(6), 2493-2504(2010)

    Sivaiah, M. V., Robles-Manuel, S., Valange, S., Barrault, J. Recent developments in acid and base-catalyzed etherification of glycerol to polyglycerols. Catalysis today, 198(1), 305-313(2012)

    Sing, K. S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 57(4), 603-619(1985).

    Srimurali, M., Karthikeyan, J. Activated alumina: defluoridation of water and household application–a study. In Twelfth International Water Technology Conference, IWTC12, Alexandria, Egypt, 153-164(2008)

    Sutter, M., Silva, E. D., Duguet, N., Raoul, Y., Métay, E., Lemaire, M. Glycerol ether synthesis: A bench test for green chemistry concepts and technologies. Chemical reviews, 115(16), 8609-8651(2015)

    Sweeley, C. C., Bentley, R., Makita, M., Wells, W. W. Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. Journal of the American Chemical Society, 85(16), 2497-2507(1963)

    Tan, H. W., Aziz, A. A., Aroua, M. K. Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, 27, 118-127(2013)

    Thitsartarn, W., Kawi, S. An active and stable CaO–CeO 2 catalyst for transesterification of oil to biodiesel. Green Chemistry, 13(12), 3423-3430(2011)

    Trueba, M., Trasatti, S. P. γ‐Alumina as a support for catalysts: a review of fundamental aspects. European journal of inorganic chemistry, 17, 3393-3403(2005)

    Vadde, K. K., Syrotiuk, V. R., Montgomery, D. C. Optimizing protocol interaction using response surface methodology. IEEE Transactions on Mobile Computing, 5(6), 627-639(2006)

    Vit, Z., Vala, J., Malek, J. Acid-base properties of aluminium oxide. Applied Catalysis, 7(2), 159-168(1983)

    Wefers, K., Misra, C. Oxides and hydroxides of aluminum. Pittsburgh, PA: Alcoa Laboratories, 19, 1-92(1987)

    Wilms, D., Stiriba, S. E., Frey, H. Hyperbranched polyglycerols: from the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Accounts of chemical research, 43(1), 129-141(2010)

    Wittcoff, H., Roach, J. R., Miller, S. E. Polyglycerols. I. The Identification of Polyglycerol Mixtures by the Procedures of Allylation and Acetonation: Isolation of Pure Diglycerol. Journal of the American Chemical Society, 69(11), 2655-2657(1947)

    World Business Council for Sustainable Development (WBCSD). Mobility 2030: meeting the challenges to sustainability. World Business Council for Sustainable Development, Conches-Geneva, Switzerland, 12-23(2004)

    Wu, C. J., Hamada, M. S. Experiments: planning, analysis, and optimization. John Wiley & Sons, 552, (2011)

    Xie, W., Peng, H., Chen, L. Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A: General, 300(1), 67-74(2006)

    Yang, F., Hanna, M. A., Sun, R. Value-added uses for crude glycerol--a byproduct of biodiesel production. Biotechnology for biofuels, 5(1), 13(2012)

    方韋翔. 以氧化鋁擔載鈣鑭氧化物催化甘油寡聚反應之研究. 碩士論文, 化學工程學系, 國立成功大學, 台南市 (2019)

    王仁浪. 鹼催化劑製備中等聚合度聚甘油工藝研究. 碩士論文, 環境與化學工程學院, 南昌市, (2013)

    王彬, 倪永全. 聚甘油的折光率與聚合度. 無錫輕工大學學報, 19, 3(2000)

    李輝煌. 田口方法:品質設計的原理與實務. 高立圖書, (2008)

    施奕丞. 以氧化鋁共同擔載鈣鍶離子催化甘油寡聚反應之研究. 碩士論文, 化學工程學系, 國立成功大學, 台南市 (2018)

    張金廷, 施永城. 聚合甘油的性質及其應用. 日用化學品科學, 28, 10(2005)

    陳勁凱. 擔載鈣離子之沸石觸媒應用於甘油醚化反應合成聚甘油之研究. 碩士論文, 化學工程學系, 國立成功大學, 台南市 (2017)

    陳宥儒. 以γ-氧化鋁擔載鍶離子催化甘油醚化反應之研究. 碩士論文, 化學工程學系, 國立成功大學, 台南市 (2017)

    謝志誠. 生質柴油與石化柴油之比較. 生質柴油之技術與文獻探討. (2007)

    顧錫芳, 施念康. 聚合甘油分析方法. 日用化學品科學, 4, 48-49(1986)

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE