簡易檢索 / 詳目顯示

研究生: 于子軒
Yu, Tzu-Hsuan
論文名稱: 自駕車外部人機介面對於行人信任程度與穿越道路行為之影響
The Effect of External Human-Machine Interface of Automated Vehicles on Pedestrians’ Trust and Crossing Behaviors
指導教授: 林明毅
Lin, Ming-I Brandon
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 145
中文關鍵詞: 虛擬實境自駕車外部人機介面行人安全自動化信任
外文關鍵詞: virtual reality, External Human-Machine Interface, pedestrian safety, trust in automation
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自駕車帶來的人車互動模式改變使得在未來行人穿越道路時很可能沒辦法與人類駕駛溝通。因此許多自駕車外部人機介面研究興起,試圖取代傳統的人類與駕駛互動。過往文獻中卻較少探討對於行人信任與實際穿越道路指標的影響。
    本研究透過實驗性研究,試圖了解不同的自駕車外部人機介面與不同的駕駛行為是否會影響行人的信任程度與穿越道路行為。透過虛擬實境建置城市內道路場景,使受試者在穿越道路時與自駕車互動。此外,在實驗中會出現8次的自駕車失效事件,目的為觀察是否有過度信任現象。結果顯示,手勢設計的外部人機介面在主觀評分上有最好的表現,並且有最短的等待時間,勝過LED設計與無安裝介面。並且,介面所表達的訊息會受與駕駛行為的交互作用影響,反映在主觀評分以及穿越道路任務指標上。例如同一種介面設計下,不同的駕駛行為下理解程度會有顯著差異、不同駕駛行為與外部人機介面的組合會有不同的等待時間。失效事件並不會在短期影響信任,反而是風險隨著時間下降了。本研究結果可供當今車廠進行參考,例如制定自駕車偵測到行人後的減速度參數以提高信任、參考本研究介面表達方式,將其運用在實際的車輛上。研究結果也可做為法規依據的參考,像是開放自駕車加裝燈飾以及開放青色作為燈色選擇。

    The shift to autonomous vehicles introduces new challenges in pedestrian-vehicle interactions. This study delves into how various external human-machine interfaces and driving behaviors influence pedestrian trust and road-crossing behaviors, using a virtual reality environment for realistic interactions. Results indicate that gesture-based interfaces excel in subjective ratings and reducing waiting times, outperforming LED designs and interfaces absent. The study also reveals that the interface's communicated messages and the driving behaviors intricately affect both the perceived understanding and the actual road-crossing behavior. Interestingly, despite several induced autonomous vehicle malfunctions, trust levels were not immediately impacted, hinting at a diminishing perceived risk over time. These insights are crucial for automotive manufacturers in fine-tuning pedestrian trust factors, such as vehicle deceleration parameters. Moreover, the findings offer substantial guidance for shaping future regulations on autonomous vehicle features, including the allowance of specific exterior light decorations and color choices.

    摘要 i Extended abstract ii 致謝 v 目錄 vi 表目錄 ix 圖目錄 xi 第一章 緒論 1 1.1 研究背景與動機 1 1.2研究目的 8 1.3 潛在貢獻 8 1.4研究範圍與限制 9 1.5 研究流程 9 第二章 文獻探討 11 2.1 虛擬實境 11 2.1.1 虛擬實境定義 11 2.1.2 虛擬實境與現實之可比較性 12 2.2 人與自駕車互動 13 2.2.1 對於自動化的信任 14 2.2.2 外部人機介面 18 2.3眼動追蹤 22 2.3.1 眼動追蹤與視覺注意力 22 2.3.2 自駕車與眼動追蹤 24 2.4近紅外光譜儀 26 2.4.1 近紅外光譜儀與大腦前額葉皮質系統 26 2.4.2 近紅外光譜儀與自駕車 27 第三章 實驗方法與工具 31 3.1研究對象 31 3.2實驗設備 32 3.3 實驗環境 33 3.4實驗設計 34 3.5 實驗流程 41 3.6實驗變項 42 3.6.1 自變項 42 3.6.2 依變項 43 3.7 統計方法 46 第四章 實驗結果 48 4.1 受試者基本資料 48 4.2 信任主觀評量指標 48 4.2.1 短版信任問卷 48 4.2.2 長版信任問卷 57 4.2.3 失效事件對於短版信任問卷的影響 61 4.3 道路穿越任務指標 65 4.3.1 穿越道路時間 65 4.3.2 等待時間 68 4.3.3 碰撞次數 71 4.3.4 平均穿越道路時加速度 72 4.3.5 第一次凝視時間 74 4.3.6 平均後侵占時間 75 4.4 眼動指標 78 4.4.1 視覺監督比例 78 4.4.2 凝視次數 85 4.5 NIRS指標 91 4.5.1 相對含氧血紅素濃度 91 第五章 討論 93 5.1 信任主觀評量討論 93 5.2 道路穿越任務指標討論 97 5.3 眼動指標討論 101 5.4 NIRS指標討論 102 5.4 各指標綜合討論 103 第六章 結論與建議 104 參考文獻 106 中文文獻 106 英文文獻 106 附錄一 動暈症易感性問卷 114 附錄二 沉浸感傾向問卷 Immersive Tendency Questionnaire 116 附錄三 Nordic Musculoskeletal 問卷 120 附錄四 Lower Extremity Functional Scale問卷 121 附錄七 練習組數與標準 122 附錄八 實驗後訪談 123 附錄九 感知風險、理解與信任問卷 124 附錄十 對於自駕車信任程度問卷 125 附錄十一 感知有用問卷 127 附錄十四 審查證明 128

    中文文獻
    市區道路及附屬工程設計標準 ( 2022年 08 月 11 日 )
    道路交通管理處罰條例 ( 2022年 05 月 04 日 )
    鄭舜文, 2022. 行人使用智慧型手機對多序列路況反應能力與腦部活化的影響. 國立成功大學
    英文文獻
    Ackermann, C., Beggiato, M., Schubert, S. & Krems, J.F., 2019. An Experimental Study to Investigate Design and Assessment Criteria: What Is Important for Communication between Pedestrians and Automated Vehicles? Applied ergonomics, 75, 272-282.
    Afara, I.O., Shaikh, R., Nippolainen, E., Querido, W., Torniainen, J., Sarin, J.K., Kandel, S., Pleshko, N. & Töyräs, J., 2021. Characterization of Connective Tissues Using near-Infrared Spectroscopy and Imaging. Nature Protocols, 16 (2), 1297-1329.
    Banducci, S.E., Ward, N., Gaspar, J.G., Schab, K.R., Crowell, J.A., Kaczmarski, H. & Kramer, A.F., 2016. The Effects of Cell Phone and Text Message Conversations on Simulated Street Crossing. Human factors, 58 (1), 150-162.
    Bazilinskyy, P., Dodou, D. & De Winter, J., 2019. Survey on Ehmi Concepts: The Effect of Text, Color, and Perspective. Transportation research part F: traffic psychology and behaviour, 67, 175-194.
    Becker, S., Brandenburg, S. & Thüring, M., 2022. Driver-Initiated Take-Overs During Critical Braking Maneuvers in Automated Driving–the Role of Time Headway, Traction Usage, and Trust in Automation. Accident Analysis & Prevention, 174, 106725.
    Bonneviot, F., Coeugnet, S. & Brangier, E., 2023. How to Improve Pedestrians' Trust in Automated Vehicles: New Road Infrastructure, External Human–Machine Interface with Anthropomorphism, or Conventional Road Signaling? Frontiers in psychology, 14, 1129341.
    Chiou, E.K. & Lee, J.D., 2023. Trusting Automation: Designing for Responsivity and Resilience. Human factors, 65 (1), 137-165.
    Choi, J.K. & Ji, Y.G., 2015. Investigating the Importance of Trust on Adopting an Autonomous Vehicle. International Journal of Human-Computer Interaction, 31 (10), 692-702.
    Clamann, M., Aubert, M. & Cummings, M.L., 2017. Evaluation of Vehicle-to-Pedestrian Communication Displays for Autonomous Vehicles. Transportation Research Board 96th Annual Meeting. 17–02119.
    Cornish, L., Hill, A., Horswill, M.S., Becker, S.I. & Watson, M.O., 2019. Eye-Tracking Reveals How Observation Chart Design Features Affect the Detection of Patient Deterioration: An Experimental Study. Applied ergonomics, 75, 230-242.
    Cotton, M., 2021. Virtual Reality, Empathy and Ethics: Springer Nature.
    De Cet, G., Baldassa, A., Tagliabue, M., Rossi, R., Vianello, C. & Gastaldi, M. 2022. The Application of Immersive Virtual Reality for Children’s Road Education: Validation of a Pedestrian Crossing Scenario. Paper presented at the International Conference on Extended Reality.
    De Clercq, K., Dietrich, A., Núñez Velasco, J.P., De Winter, J. & Happee, R., 2019. External Human-Machine Interfaces on Automated Vehicles: Effects on Pedestrian Crossing Decisions. Human factors, 61 (8), 1353-1370.
    Deb, S., Rahman, M.M., Strawderman, L.J. & Garrison, T.M., 2018a. Pedestrians’ Receptivity toward Fully Automated Vehicles: Research Review and Roadmap for Future Research. IEEE Transactions on Human-Machine Systems, 48 (3), 279-290.
    Deb, S., Strawderman, L.J. & Carruth, D.W., 2018b. Investigating Pedestrian Suggestions for External Features on Fully Autonomous Vehicles: A Virtual Reality Experiment. Transportation research part F: traffic psychology and behaviour, 59, 135-149.
    Defanti, T.A., Acevedo, D., Ainsworth, R.A., Brown, M.D., Cutchin, S., Dawe, G., Doerr, K.-U., Johnson, A., Knox, C. & Kooima, R., 2011. The Future of the Cave. Central European Journal of Engineering, 1 (1), 16-37.
    Dey, D., Habibovic, A., Löcken, A., Wintersberger, P., Pfleging, B., Riener, A., Martens, M. & Terken, J., 2020. Taming the Ehmi Jungle: A Classification Taxonomy to Guide, Compare, and Assess the Design Principles of Automated Vehicles' External Human-Machine Interfaces. Transportation Research Interdisciplinary Perspectives, 7, 100174.
    Dey, D. & Terken, J. 2017. Pedestrian Interaction with Vehicles: Roles of Explicit and Implicit Communication. Paper presented at the Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Oldenburg, Germany.
    Dey, D., Walker, F., Martens, M. & Terken, J. 2019. Gaze Patterns in Pedestrian Interaction with Vehicles: Towards Effective Design of External Human-Machine Interfaces for Automated Vehicles. Paper presented at the Proceedings of the 11th international conference on automotive user interfaces and interactive vehicular applications.
    Durugbo, C.M., 2021. Eye Tracking for Work-Related Visual Search: A Cognitive Task Analysis. Ergonomics, 64 (2), 225-240.
    Ezzati Amini, R., Katrakazas, C. & Antoniou, C., 2019. Negotiation and Decision-Making for a Pedestrian Roadway Crossing: A Literature Review. Sustainability, 11 (23), 6713.
    Faas, S., Kraus, J., Schoenhals, A. & Baumann, M. 2021. Calibrating Pedestrians' Trust in Automated Vehicles: Does an Intent Display in an External Hmi Support Trust Calibration and Safe Crossing Behavior? Paper presented at the Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
    Faas, S.M., Mathis, L.-A. & Baumann, M., 2020. External Hmi for Self-Driving Vehicles: Which Information Shall Be Displayed? Transportation research part F: traffic psychology and behaviour, 68, 171-186.
    Farahani, N., Post, R., Duboy, J., Ahmed, I., Kolowitz, B.J., Krinchai, T., Monaco, S.E., Fine, J.L., Hartman, D.J. & Pantanowitz, L., 2016. Exploring Virtual Reality Technology and the Oculus Rift for the Examination of Digital Pathology Slides. Journal of pathology informatics, 7 (1), 22.
    Feng, Y., Duives, D.C. & Hoogendoorn, S.P., 2021. Using Virtual Reality to Study Pedestrian Exit Choice Behaviour During Evacuations. Safety science, 137, 105158.
    Ferng, A., 2020. Brodmann Areas [online]. Kenhub. Available from: https://www.kenhub.com/en/library/anatomy/brodmann-areas [Accessed Access Date
    Geddes, N.B., 1940. Magic Motorways: Ramdom House, New York.
    Gross, A., 2022. Consumer Skepticism toward Autonomous Driving Features Justified [online]. AAA Public Relations. Available from: https://newsroom.aaa.com/2022/05/consumer-skepticism-toward-active-driving-features-justified/?_trms=6ff0397836434d79.1665912532108# [Accessed Access Date 2022].
    Guo, F., Lyu, W., Ren, Z., Li, M. & Liu, Z., 2022. A Video-Based, Eye-Tracking Study to Investigate the Effect of Ehmi Modalities and Locations on Pedestrian–Automated Vehicle Interaction. Sustainability, 14 (9), 5633.
    Habibovic, A., Lundgren, V.M., Andersson, J., Klingegård, M., Lagström, T., Sirkka, A., Fagerlönn, J., Edgren, C., Fredriksson, R. & Krupenia, S., 2018. Communicating Intent of Automated Vehicles to Pedestrians. Frontiers in psychology, 1336.
    Hergeth, S., Lorenz, L., Vilimek, R. & Krems, J.F., 2016. Keep Your Scanners Peeled: Gaze Behavior as a Measure of Automation Trust During Highly Automated Driving. Human factors, 58 (3), 509-519.
    Hocke, L.M., Oni, I.K., Duszynski, C.C., Corrigan, A.V., Frederick, B.D. & Dunn, J.F., 2018. Automated Processing of Fnirs Data—a Visual Guide to the Pitfalls and Consequences. Algorithms, 11 (5), 67.
    Hoesterey, S. & Onnasch, L., 2023. The Effect of Risk on Trust Attitude and Trust Behavior in Interaction with Information and Decision Automation. Cognition, Technology & Work, 25 (1), 15-29.
    Hoff, K.A. & Bashir, M., 2015. Trust in Automation: Integrating Empirical Evidence on Factors That Influence Trust. Human factors, 57 (3), 407-434.
    Holländer, K., Wintersberger, P. & Butz, A. 2019. Overtrust in External Cues of Automated Vehicles: An Experimental Investigation. Paper presented at the Proceedings of the 11th international conference on automotive user interfaces and interactive vehicular applications.
    Hopko, S.K. & Mehta, R.K., 2024. Trust in Shared-Space Collaborative Robots: Shedding Light on the Human Brain. Human factors, 66 (2), 490-509.
    Hopko, S.K., Mehta, R.K. & Mcdonald, A.D. 2021. Trust in Automation: Comparison of Automobile, Robot, Medical, and Cyber Aid Technologies. Paper presented at the Proceedings of the Human Factors and Ergonomics Society Annual Meeting.
    Jayaraman, S.K., Creech, C., Robert Jr, L.P., Tilbury, D.M., Yang, X.J., Pradhan, A.K. & Tsui, K.M. 2018. Trust in Av: An Uncertainty Reduction Model of Av-Pedestrian Interactions. Paper presented at the Companion of the 2018 ACM/IEEE international conference on human-robot interaction.
    Jayaraman, S.K., Creech, C., Tilbury, D.M., Yang, X.J., Pradhan, A.K., Tsui, K.M. & Robert Jr, L.P., 2019. Pedestrian Trust in Automated Vehicles: Role of Traffic Signal and Av Driving Behavior. Frontiers in Robotics and AI, 6, 117.
    Jeong, H. & Liu, Y., 2019. Effects of Non-Driving-Related-Task Modality and Road Geometry on Eye Movements, Lane-Keeping Performance, and Workload While Driving. Transportation research part F: traffic psychology and behaviour, 60, 157-171.
    Jian, J.-Y., Bisantz, A.M. & Drury, C.G., 2000. Foundations for an Empirically Determined Scale of Trust in Automated Systems. International journal of cognitive ergonomics, 4 (1), 53-71.
    Jiang, K., Ling, F., Feng, Z., Ma, C., Kumfer, W., Shao, C. & Wang, K., 2018. Effects of Mobile Phone Distraction on Pedestrians’ Crossing Behavior and Visual Attention Allocation at a Signalized Intersection: An Outdoor Experimental Study. Accident Analysis & Prevention, 115, 170-177.
    Jiang, X., Wang, W., Bengler, K. & Guo, W., 2015. Analyses of Pedestrian Behavior on Mid-Block Unsignalized Crosswalk Comparing Chinese and German Cases. Advances in mechanical engineering, 7 (11), 1687814015610468.
    Kalantari, S., Rounds, J.D., Kan, J., Tripathi, V. & Cruz-Garza, J.G., 2021. Comparing Physiological Responses During Cognitive Tests in Virtual Environments Vs. In Identical Real-World Environments. Scientific Reports, 11 (1), 1-14.
    Kaleefathullah, A.A., Merat, N., Lee, Y.M., Eisma, Y.B., Madigan, R., Garcia, J. & Winter, J.D., 2022. External Human–Machine Interfaces Can Be Misleading: An Examination of Trust Development and Misuse in a Cave-Based Pedestrian Simulation Environment. Human factors, 64 (6), 1070-1085.
    Kamimura, H., Matsuoka, T., Okai, H., Shimizu, N., Harada, S. & Matsuo, K., 2022. The Associations between Suicide-Related Behaviors, Prefrontal Dysfunction in Emotional Cognition, and Personality Traits in Mood Disorders. Scientific Reports, 12 (1), 1-12.
    Kennedy, R.S., Lane, N.E., Berbaum, K.S. & Lilienthal, M.G., 1993. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. The international journal of aviation psychology, 3 (3), 203-220.
    Kolk, S.M. & Rakic, P., 2022. Development of Prefrontal Cortex. Neuropsychopharmacology, 47 (1), 41-57.
    Lau, M., Jipp, M. & Oehl, M., 2022. One Solution Fits All? Evaluating Different Communication Strategies of a Light-Based External Human-Machine Interface for Differently Sized Automated Vehicles from a Pedestrian’s Perspective. Accident Analysis & Prevention, 171, 106641.
    Lee, J.D. & See, K.A., 2004. Trust in Automation: Designing for Appropriate Reliance. Human factors, 46 (1), 50-80.
    Lee, Y.M., Madigan, R., Giles, O., Garach-Morcillo, L., Markkula, G., Fox, C., Camara, F., Rothmueller, M., Vendelbo-Larsen, S.A. & Rasmussen, P.H., 2021. Road Users Rarely Use Explicit Communication When Interacting in Today’s Traffic: Implications for Automated Vehicles. Cognition, Technology & Work, 23 (2), 367-380.
    Leveque, L., Ranchet, M., Deniel, J., Bornard, J.-C. & Bellet, T., 2020. Where Do Pedestrians Look When Crossing? A State of the Art of the Eye-Tracking Studies. IEEE Access, 8, 164833-164843.
    Lin, M.-I.B. & Huang, Y.-P., 2017. The Impact of Walking While Using a Smartphone on Pedestrians’ Awareness of Roadside Events. Accident Analysis & Prevention, 101, 87-96.
    Litman, T. 2020. Autonomous Vehicle Implementation Predictions: Implications for Transport Planning. . Victoria Transport Policy Institute.
    Lundgren, V.M., Habibovic, A., Andersson, J., Lagström, T., Nilsson, M., Sirkka, A., Fagerlönn, J., Fredriksson, R., Edgren, C. & Krupenia, S., 2017. Will There Be New Communication Needs When Introducing Automated Vehicles to the Urban Context? Advances in Human Aspects of Transportation. Springer, 485-497.
    Ma, R.H., Morris, A., Herriotts, P. & Birrell, S., 2021. Investigating What Level of Visual Information Inspires Trust in a User of a Highly Automated Vehicle. Applied ergonomics, 90, 103272.
    Madhavan, P. & Wiegmann, D.A., 2007. Similarities and Differences between Human–Human and Human–Automation Trust: An Integrative Review. Theoretical Issues in Ergonomics Science, 8 (4), 277-301.
    Mahadevan, K., Somanath, S. & Sharlin, E. 2018. Communicating Awareness and Intent in Autonomous Vehicle-Pedestrian Interaction. Paper presented at the Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
    Manchon, J.-B., Bueno, M. & Navarro, J., 2022. How the Initial Level of Trust in Automated Driving Impacts Drivers’ Behaviour and Early Trust Construction. Transportation research part F: traffic psychology and behaviour, 86, 281-295.
    Masuda, R., Ono, S., Hiraoka, T. & Suda, Y. 2023. Trust Estimation for Autonomous Vehicles by Measuring Pedestrian Behavior in Vr. Paper presented at the Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction.
    Mccambridge, J., Witton, J. & Elbourne, D.R., 2014. Systematic Review of the Hawthorne Effect: New Concepts Are Needed to Study Research Participation Effects. Journal of clinical epidemiology, 67 (3), 267-277.
    Nhtsa. 2015. Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey. National Highway Traffic Safety Administration.
    Owen, A.M., Mcmillan, K.M., Laird, A.R. & Bullmore, E., 2005. N‐Back Working Memory Paradigm: A Meta‐Analysis of Normative Functional Neuroimaging Studies. Human brain mapping, 25 (1), 46-59.
    Pala, P., Cavallo, V., Dang, N.T., Granie, M.-A., Schneider, S., Maruhn, P. & Bengler, K., 2021. Is the Street-Crossing Behavior with a Head-Mounted Display Different from That Behavior in a Cave? A Study among Young Adults and Children. Transportation research part F: traffic psychology and behaviour, 82, 15-31.
    Pelau, C., Dabija, D.-C. & Ene, I., 2021. What Makes an Ai Device Human-Like? The Role of Interaction Quality, Empathy and Perceived Psychological Anthropomorphic Characteristics in the Acceptance of Artificial Intelligence in the Service Industry. Computers in Human Behavior, 122, 106855.
    Perello-March, J., Burns, C.G., Woodman, R., Birrell, S. & Elliott, M.T., 2023. How Do Drivers Perceive Risks During Automated Driving Scenarios? An Fnirs Neuroimaging Study. Human factors, 00187208231185705.
    Perello-March, J.R., Burns, C.G., Woodman, R., Elliott, M.T. & Birrell, S.A., 2022. Using Fnirs to Verify Trust in Highly Automated Driving. IEEE transactions on intelligent transportation systems.
    Petersen, L., Robert, L., Yang, X.J. & Tilbury, D.M., 2019. Situational Awareness, Drivers Trust in Automated Driving Systems and Secondary Task Performance. SAE International Journal of Connected and Autonomous Vehicles, 2 (2).
    Pirker, J. & Dengel, A., 2021. The Potential of 360° Virtual Reality Videos and Real Vr for Education—a Literature Review. IEEE computer graphics and applications, 41 (4), 76-89.
    SAE, 2016a. Color Specification. Standard J578_200612. Warrendale, PA, USA: SAE International.
    SAE, 2016b. Taxonomy and Definitions for Terms Related to Driving Automation Systems for on-Road Motor Vehicles. Standard J3016_202104. Warrendale, PA, USA: SAE International, 2016.
    Salvendy, G. & Karwowski, W., 2021. Handbook of Human Factors and Ergonomics: John Wiley & Sons.
    Sato, H., Yahata, N., Funane, T., Takizawa, R., Katura, T., Atsumori, H., Nishimura, Y., Kinoshita, A., Kiguchi, M. & Koizumi, H., 2013. A Nirs–Fmri Investigation of Prefrontal Cortex Activity During a Working Memory Task. Neuroimage, 83, 158-173.
    Schneider, S. & Bengler, K., 2020. Virtually the Same? Analysing Pedestrian Behaviour by Means of Virtual Reality. Transportation research part F: traffic psychology and behaviour, 68, 231-256.
    Schneider, S., Maruhn, P., Dang, N.-T., Pala, P., Cavallo, V. & Bengler, K., 2022. Pedestrian Crossing Decisions in Virtual Environments: Behavioral Validity in Caves and Head-Mounted Displays. Human factors, 64 (7), 1210-1226.
    Singer, J., Tefft, B.C., Benson, A., Jenness, J.W. & Horrey, W.J., 2022. Driver Expectations of a Partial Driving Automation System in Relation to Branding and Training. Human factors, 00187208221143024.
    Song, Y., Jiang, Q., Chen, W., Zhuang, X. & Ma, G., 2023. Pedestrians’ Road-Crossing Behavior Towards Ehmi-Equipped Autonomous Vehicles Driving in Segregated and Mixed Traffic Conditions. Accident Analysis & Prevention, 188, 107115.
    Sucha, M., Dostal, D. & Risser, R., 2017. Pedestrian-Driver Communication and Decision Strategies at Marked Crossings. Accident Analysis & Prevention, 102, 41-50.
    Tabone, W., De Winter, J., Ackermann, C., Bärgman, J., Baumann, M., Deb, S., Emmenegger, C., Habibovic, A., Hagenzieker, M. & Hancock, P.A., 2021. Vulnerable Road Users and the Coming Wave of Automated Vehicles: Expert Perspectives. Transportation Research Interdisciplinary Perspectives, 9, 100293.
    Tapiro, H., Wyman, A., Borowsky, A., Petzoldt, T., Wang, X. & Hurwitz, D.S., 2022. Automated Vehicle Failure: The First Pedestrian Fatality and Public Perception. Transportation Research Record, 03611981221083297.
    Wang, H., Li, D., Wang, Q., Schwebel, D.C., Miao, L. & Shen, Y., 2022. How Distraction Affects Pedestrian Response: Evidence from Behavior Patterns and Cortex Oxyhemoglobin Changes. Transportation research part F: traffic psychology and behaviour, 91, 414-430.
    Wang, H., Zhang, X., Li, J., Li, B., Gao, X., Hao, Z., Fu, J., Zhou, Z. & Atia, M., 2023. Driving Risk Cognition of Passengers in Highly Automated Driving Based on the Prefrontal Cortex Activity Via Fnirs. Scientific Reports, 13 (1), 15839.
    Wilbrink, M., Lau, M., Illgner, J., Schieben, A. & Oehl, M., 2021. Impact of External Human–Machine Interface Communication Strategies of Automated Vehicles on Pedestrians’ Crossing Decisions and Behaviors in an Urban Environment. Sustainability, 13 (15), 8396.
    Wojciechowski, A., Wiśniewska, A., Pyszora, A., Liberacka-Dwojak, M. & Juszczyk, K., 2021. Virtual Reality Immersive Environments for Motor and Cognitive Training of Elderly People–a Scoping Review. Human Technology, 17 (2), 145.
    Wolverton, G.S. & Zola, D., 1983. The Temporal Characteristics of Visual Information Extraction During Reading. Eye Movements in Reading. Elsevier, 41-51.
    Xiong, J., Hsiang, E.-L., He, Z., Zhan, T. & Wu, S.-T., 2021. Augmented Reality and Virtual Reality Displays: Emerging Technologies and Future Perspectives. Light: Science & Applications, 10 (1), 1-30.
    Yarbus, A., Haigh, B. & Rigss, L., 1967. Eye Movements and Vision. Plenum Press New York.
    Yi, B., Cao, H., Song, X., Wang, J., Zhao, S., Guo, W. & Cao, D., 2023. How Can the Trust-Change Direction Be Measured and Identified During Takeover Transitions in Conditionally Automated Driving? Using Physiological Responses and Takeover-Related Factors. Human factors, 00187208221143855.
    Zgonnikov, A., Abbink, D. & Markkula, G., 2022. Should I Stay or Should I Go? Cognitive Modeling of Left-Turn Gap Acceptance Decisions in Human Drivers. Human factors, 00187208221144561.
    Zhang, T., Tao, D., Qu, X., Zhang, X., Lin, R. & Zhang, W., 2019. The Roles of Initial Trust and Perceived Risk in Public’s Acceptance of Automated Vehicles. Transportation research part C: emerging technologies, 98, 207-220.
    Zhao, Q., Zhuang, X., Zhang, T., He, Y. & Ma, G., 2023. Pedestrian Gaze Pattern before Crossing Road in a Naturalistic Traffic Setting. European Transport Research Review, 15 (1), 31.
    Zheng, J., Chan, K. & Gibson, I., 1998. Virtual Reality. Ieee Potentials, 17 (2), 20-23.
    Zhou, S., Sun, X., Liu, B. & Burnett, G., 2021. Factors Affecting Pedestrians’ Trust in Automated Vehicles: Literature Review and Theoretical Model. IEEE Transactions on Human-Machine Systems.

    無法下載圖示 校內:2029-01-22公開
    校外:2029-01-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE