| 研究生: |
鄭偉志 Cheng, Wei-Chih |
|---|---|
| 論文名稱: |
聚噻吩於亞共晶二元系中的液晶相成長路徑與鏈段取向之探討 Study on the selective routes of liquid crystalline organizations and azimuthal orientation of Poly(3-hexylthiophene) backbones in hypo-eutectic mixtures |
| 指導教授: |
阮至正
Ruan, Jr-jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 磊晶成長 、共晶系統 、聚(三-已基噻吩) |
| 外文關鍵詞: | epitaxial crystallization, eutectic mixtures, face-on organization |
| 相關次數: | 點閱:73 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這個研究發現了,導電高分子聚(三-已基噻吩)(P3HT)可以和六甲苯(HMB)形成二元共晶系統(eutectic binary system)。藉由熱分析探討混摻比例對熔點的影響,可以推論共晶成分為66 wt%的P3HT組成,共晶溫度為142±1 ℃,並建立起相圖。於此二元系中,此研究著重在瞭解於亞共晶混摻下,P3HT分子在HMB晶相上的析出與有序相的成長。
在較大的過冷度下,P3HT在HMB晶相上有序相的成長形成條紋狀的形態,並具有face-on排列取向。於此face-on排列,鏈段的有序排列與鬆散的無序排列區域交互推疊。於較小的過冷度下,發展出沿著分子鏈方向延伸的長板狀區域,具有edge-on的排列取向。對於這些液晶相的成長,不論是排列取向或析出區域的形態,都可以fringe micelles的形成來瞭解。
若將Graphene混摻入P3HT與HMB二元系,可以發現到P3HT均形成edge-on取向的液晶相。相對的,若以二氯苯Dichlorobenzene (DCB)取代HMB作為結晶基材,則可以使P3HT分子一致以face-on取向排列成液晶相。因此這個研究上成功的藉由不同的因素來調控P3HT有序相的排列取向。
The delocalization of π-electron has been acknowledged as a basic feature for charge transport within thin film of conjugated molecules. For the intermolecular charge transportation through π-π stacking, the spread of ordered and amorphous domains within thin film is critical. However, for most studied electro-optic conjugated polymers, the assembly and crystal growth mechanisms within thin film remains unclear. The limited control on molecular packing, domain morphology and distribution unavoidably results in the defects able to traps the electrons, significantly lowering the performance of organic thin film. It is needed to explore new understanding on low dimensional polymer physics for enhancing and tailoring molecular organization.
Via homogeneous mixing with hexamethylbenzene (HMB), binary eutectic systems of poly(3-hexylthiophene) (P3HT) has been achieved. Based on the variation of melting points with mixing ratio, the eutectic temperature and phase diagram was disclosed. During cooling from molten state, the continuous crystalline network of small organic molecules developed first and subsequently initiated epitaxial crystallization of conjugated polymers. The routes of liquid crystalline (LC) organization of P3HT below eutectic temperature were studied as a consequence of dissolution in mixing constituent HMB. Regarding the successive molecular organization process within studied binary mixtures, the encountered degree of supercooling were found influential to the organization orientation of conjugated backbone relative to substrate. While 45 degrees of supercooling is created, face-on organization is dominant and featured with layer stacking of organized thiophene stems alternatively with loosely-aggregated regions by a nanometer scale of stacking periodicity. Differently, under only few degrees of undercooling below the eutectic temperature, edge-on organization preferably progressed, which results in the anisotropic platelets extending along the chain direction. Regarding these prompt epitaxial LC organizations of conjugated polythiophene on HMB crystals, the association of bead-like or worm-like fringe micelles in molten state emerges as the elucidative background for both structural and morphological features. Further annealing treatment is able to cause the transformation of prior face-on liquid crystalline phase to the edge-on crystalline packing.
With the incorporation of graphene nanocrystals within this binary system, only edge-on organization is able to develop. Nevertheless, on the crystalline surface of dichlorobenzene (DCB), molecular organization only adopts face-on orientation. In summary, these binary systems unveil the substrate and mixing effect on introducing new routes of molecular organization with selective backbone orientation relative to substrate.
1. Less, K. J.; Wilson, E. G. J. Phys. C: Solid State Phys 1973, 6, 3110-3120.
2. Bao, Z.; A. Dodabalapur, L. Appl. Phys. Lett. 1996, 69, 4108.
3. Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, (5370), 1741-1744.
4. Bozano, L.; Carter, S. A.; Scott, J. C.; Malliaras, G. G.; Brock, P. J. Appl. Phys. Lett. 1999, 74, (8), 1132-1134.
5. Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Liu, J.; Fréchet, J. M. J. Advanced Materials 2003, 15, (18), 1519-1522.
6. Babel, A.; Jenekhe, S. A. Advanced Materials 2002, 14, (5), 371-374.
7. Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Science 2000, 289, (5476), 94-97.
8. Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, (4), 1324-1338.
9. Zhan, X.; Z. Tan, B. D.; Marder, S. R. J. Am. Chem. Soc. 2007, 129, 7247.
10. Yang, L.; Feng, J.-K.; Ren, A.-M. Journal of Computational Chemistry 2005, 26, (10), 969-979.
11. Murphy, A. R.; Frechet, J. M. J. Chem. Rev. 2007, 107, (4), 1066-1096.
12. Meille, S. V.; Romita, V.; Caronna, T.; Lovinger, A. J.; Catellani, M.; Belobrzeckaja, L. Macromolecules 1997, 30, (25), 7898-7905.
13. Prosa, T. J.; Winokur, M. J.; Moulton, J.; Smith, P.; Heeger, A. J. Macromolecules 1992, 25, (17), 4364-4372.
14. Prosa, T. J.; Winokur, M. J.; McCullough, R. D. Macromolecules 1996, 29, 10), 3654-3656.
15. Lu, G. H.; Li, L. G.; Yang, X. N. Advanced Materials 2007, 19, (21), 3594-3598.
16. Lu, G. H.; Li, L. G.; Yang, X. N. Macromolecules 2008, 41, (6), 2062-2070.
17. Joshi, S.; Grigorian, S.; Pietsch, U. physica status solidi (a) 2008, 205, (3), 488-496.
18. Tashiro, K.; Ono, K.; Minagawa, Y.; Kobayashi, M.; Kawai, T.; Yoshino, K. J. Polym. Sci. Pt. B-Polym. Phys. 1991, 29, (10), 1223-1233.
19. Tashiro, K.; Kobayashi, M.; Kawai, T.; Yoshino, K. Polymer 1997, 38, (12), 2867-2879.
20. Kayunkid, N.; Uttiya, S.; Brinkmann, M. Macromolecules 2010, 43, (11), 4961-4967.
21. Buono, A.; Son, N. H.; Raos, G.; Gila, L.; Cominetti, A.; Catellani, M.; Meille, S. V. Macromolecules 2010, 43, (16), 6772-6781.
22. Brinkmann, M.; Rannou, P. Adv. Funct. Mater. 2007, 17, (1), 101-108.
23. Zen, A.; Pflaum, J.; Hirschmann, S.; Zhuang, W.; Jaiser, F.; Asawapirom, U.; Rabe, J. P.; Scherf, U.; Neher, D. Adv. Funct. Mater. 2004, 14, (8), 757-764.
24. Verilhac, J. M.; LeBlevennec, G.; Djurado, D.; Rieutord, F.; Chouiki, M.; Travers, J. P.; Pron, A. Synth. Met. 2006, 156, (11-13), 815-823.
25. Yang, H.; LeFevre, S. W.; Ryu, C. Y.; Bao, Z. Appl. Phys. Lett. 2007, 90, 172116.
26. Kim, D. H.; Park, Y. D.; Jang, Y. S.; Yang, H. C.; Kim, Y. H.; Han, J. I.; Moon, D. G.; Park, S. J.; Chang, T. Y.; Chang, C. W.; Joo, M. K.; Ryu, C. Y.; Cho, K. W. Adv. Funct. Mater. 2005, 15, (1), 77-82.
27. Seifert, H. Angewandte Chemie 1953, 65, (1), 34-35.
28. Frankenheim, M. Annalen der Physik 1836, 37, 516-522.
29. Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Polymer 2000, 41, (25), 8909-8919.
30. Brockway, L.; Robertson, J. M. J. Chem. Soc. 1939, 1324-1332.
31. Wellingh.S; Rybnikar, F.; Baer, E. J. Macromol. Sci.-Phys. 1974, B 10, (1), 1-39.
32. Brinkmann, M.; Wittmann, J. C. Advanced Materials 2006, 18, (7), 860-863.
33. Brinkmann, M.; Chandezon, F.; Pansu, R. B.; Julien-Rabant, C. Adv. Funct. Mater. 2009, 19, (17), 2759-2766.
34. Brinkmann, M.; Contal, C.; Kayunkid, N.; Djuric, T.; Resel, R. Macromolecules 2010, 43, (18), 7604-7610.
校內:2018-08-27公開