簡易檢索 / 詳目顯示

研究生: 盧奕穎
Lu, Yi-Ying
論文名稱: 對於廣義子行列式的正係數猜想
Toward a positivity conjecture for generalized minors
指導教授: 楊世偉
Yang, Shih-Wei
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 31
中文關鍵詞: 廣義子行列式正係數猜想
外文關鍵詞: Generalized minors, positivity conjecture
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們首先回顧古典類型的廣義子行列式組合計算公式,這些公式是由某些加權路徑圖而得。

    任何廣義子行列式的係數被猜測為恆正,我們將討論此猜想的幾個特別案例。

    We first recall the combinatorial formulas for computing generalized minors in the classical types. The formulas are given in terms of the weighted paths in certain directed graph.

    The coefficients in any generalized minor are conjectured to be positive, and we will discuss this conjecture in some special cases.

    Chapter 0 Introdution p3. Chapter 1 Preliminaries p4. section 1.1 Exterior power p4. section 1.2 Lindström-Gessel-Viennot Lemma p6. Chapter 2 Generalized minors of classical types p9. section 2.1 Type An p9. section 2.2 Type Dn p15. Chapter 3 Positivity conjecture for Type p19. section 3.1 Case 1(two paths) p20. section 3.2 Case 2(three paths) p22. Bibliography p31.

    [1]Martin Aigner, A course in enumeration, Springer-Verlag Berlin Heidelberg, 2007.
    [2]S. Fomin and A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math.
    Soc. 12 (1999), 335-380.
    [3]Catherine H. Yan. Joseph P.S. Kung, Gian-Carlo Rota, Combinatorics, Cambridge,
    UK ; New York : Cambridge University Press, 2009.
    [4]S.-W. Yang, Combinatorial expressions for F-polynomials in classical types, Combinatorial
    Theory, Series A (2012), 747-764.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE