簡易檢索 / 詳目顯示

研究生: 蔡牧平
Tsai, Mu-Ping
論文名稱: 針對薄壁錐形工件之銑切動態研究
Study on Milling Dynamics for Thin-walled Cone-geometry Workpieces
指導教授: 蔡南全
Tsai, Nan-Chyuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 122
中文關鍵詞: 薄壁管狀形工件表面誤差形變量切削扭矩迴授控制
外文關鍵詞: thin-walled tubular workpiece, surface error, deflection, Cutting torque feedback control
相關次數: 點閱:129下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄壁管狀形工件常應用在許多航太及醫療的產品上,然而由於其特殊的幾何形狀與低加工性,在銑切這類零件時,刀具與工件受到切削力容易產生形變甚至毀損,進而影響加工精度。因此,在不大幅度影響產能的前提下,找出適當的切削條件,克服加工難度變得十分重要。
    首先,本文研究薄壁管狀形工件的切削動態包括銑切振動與形變量。不穩定的振動,例如顫振(chatter),會嚴重影響加工品質,且降低主軸與刀具壽命。在解決方法上,可以藉由穩定耳垂圖(stability lobes diagram)找出適當的切削條件。對於形變量的動態特性,本文透過有限元素分析軟體ANSYS模擬刀具與工件受力形變,由結果可以建立切削力、形變量與刀具位置的三者關係數學模型。
    其次,根據文獻研究顯示切向力占總切削力極大的部分,而切向力可以從切削扭矩中此項中,經演算粹取而推倒獲得,因此本文建立針對管狀形薄壁零件的平均切削扭矩模型,可以發現進給率與切削深度直接影響加工精度與生產效率。
    接著從此模型中,本文提出一套切削扭矩迴授控制理論,透過主軸馬達電流去估測當時的切削扭矩,並利用卡爾曼濾波器(Kalman filter)去除訊號中的雜訊。在允許的表面誤差範圍內,適應性調整最大軸向進給率。透過銑切動態的研究,切削扭矩目標值應隨著刀具位置的改變,進行適當的調整。
    最後,為了驗證控制器的效益,本文重新設置電腦數值控制(computer numerical control)的運作程序,在銑切中也能達成進給率即時調控。實驗主要針對直筒管狀形與錐形工件進行螺旋銑切,並比較具備與移除自調切削扭矩目標值的控制器,結果顯示本文提出的控制策略在加工精度與生產效率間取得最佳切削條件。

    Thin-wall tubular-geometry workpiece have been widely applied in aircraft and medical industries. However, due to the special shape of this kind of workpiece and induced poor machinability, the desired accuracy of machining tends to be greatly degraded, no matter what metal-cutting task, such as milling, drilling or turning, is undertaken. Therefore, this research proposes a few suitable cutting conditions which are able to prevent break/crack of thin-wall workpiece but almost retain the same productivity. To achieve this goal, a systematic study on surface profile of machined parts due to deflections caused by both tool and workpiece is presented. In addition, an effective feedback control system is proposed by this thesis for applying appropriate cutting force to account for severe deflection of tool/workpiece and potential break/crack of the thin-wall conical pipes. The experiment mainly focus on machining of thin-walled straight tubular and conical tubular geometries components by helical milling, and the results demonstrate that the proposed control strategy provides an optimal cutting conditions between accuracy and machining cycle time.

    摘要 I 英文延伸摘要 III 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 第二章 薄壁管狀型工件之銑切動態分析 6 2.1 基本切削力學 6 2.2 切削扭矩模型 11 2.3 管狀薄壁銑切動態 17 2.3.1 銑切動態的振動模型 18 2.3.2 刀具與工件的切削力形變模型 22 第三章 切削扭矩迴授控制 33 3.1 切削扭矩估測器 34 3.1.1 主軸馬達中的機械能損耗 35 3.1.2 主軸馬達中的電磁能耗損 36 3.1.3 切削扭矩與電流模型 37 3.1.4 模型參數 38 3.2 濾波器 41 3.2.1 卡爾曼濾波器演算法 42 3.2.2主軸馬達電流濾波器 43 3.3 模糊邏輯進給率調變器 46 第四章 實驗設置 56 4.1 相關硬體介紹 57 4.1.1 工具機系統(machine tool) 58 4.1.2 電腦I/O面板(connector panel) 61 4.1.3 電流感測器(current sensor) 63 4.2 控制器軟體 65 4.2.1 運動控制程序 65 4.2.2 人機介面 66 4.3 本實驗設計的量測系統 70 4.3.1 刀具與工件靜態形變量測系統 70 4.3.2 表面粗糙度量測系統 72 第五章 實驗結果與討論 74 5.1 切削扭矩模型的驗證 74 5.2 靜態形變量的量測 77 5.2.1 刀具的靜態形變 79 5.2.2 工件的靜態形變 80 5.3 切削扭矩回授控制的結果 86 5.3.1 卡爾曼濾波器 86 5.3.2 模糊進給率調節器 89 5.3.2a 直筒管狀形工件銑切實驗 91 5.3.2b 錐形工件銑切實驗 101 第六章 結論與未來展望 110 6.1 結論 110 6.2 未來展望 110 參考文獻 112 附錄 116 附錄A 模糊控制器簡介 116 自 述 122

    [1] 傅光華,切削工具學,高立圖書有限公司,1986。
    [2] Y. Altintas, “Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design”, London: Cambridge University Press, 2000
    [3] T. C. Bera, K. A. Desai, and P. V. M. Rao, “On milling of thin-walled tubular geometries”, Journal of Engineering Manufacture, Vol. 224 Part B, pp.1804-1816, 2010
    [4] B. Wanner, M. Eynian, T. Beno, and L. Pejryd, "Milling Strategies for Thin-walled Components", Advanced Materials Research, Vol. 498, pp . 177-182, 2012
    [5] J. L. Stein, and K. Huh, "Monitoring Cutting Forces In Turning: A Model-Based Approach", Journal of Manufacturing Science and Engineering, Vol. 124, pp. 26-31, 2002
    [6] X. Li, "Development of Current Sensor for Cutting Force Measurement in Turning", IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 54, NO. 1, pp. 289-296, 2005
    [7] A. A. D. Sarhan, A. Matsubrara, M. Sugigara, H. Saraie, S. Ibaraki, and Y. Kakino, "Monitoring Method of Cutting Force by Using Additional Spindle Sensors", JSME, Vol. 49, No.2 , pp. 307-315, 2006
    [8] S. Aggarwal, N. Nešić, and P. Xirouchakis, “Cutting torque and tangential cutting force coefficient identification from spindle motor current”, International Journal of Advanced Manufacturing Technology, Vol. 65, pp. 81-95, 2013
    [9] L. Li, D. Liu, "Experimental Research on the Dynamic Characteristics of the Milling Vibration in High-speed Milling of the Thin-wall Components", Advanced Materials Research, Vols. 328-330, pp. 483-486, 2011
    [10] V. Thevenot, L. Arnaud, G. Dessein, and G. Cazenave-Larroche, "Integration of dynamic behaviour variations in the stability lobes method: 3D lobes construction and application to thin-walled structure milling", Int. J. Adv. Manuf. Technol., Vol. 27, pp. 638–644, 2006
    [11] V. S. Rao, and P. V. M. Rao, "Effect of workpiece curvature on cutting forces and surface error in peripheral milling", Journal of Engineering Manufacture, Vol. 220, 2006
    [12] T. Dewena, P. Rushub, and Z. ruilanc, "Numerical simulation study of high-speed milling thin-wall part", Advanced Materials Research, Vols. 239-242, pp. 801-805, 2011
    [13] T.C. Bera, K.A. Desai, and P.V.M. Rao, "Error compensation in flexible end milling of tubular geometries", Journal of Materials Processing Technology, Vol. 211, pp. 24–34, 2011
    [14] E. Budak, and Y. Altintas, "Peripheral milling conditions for improved dimensional accuracy" Int. J. Mach. Tools Manuf., Vol. 37, pp. 907–918, 1994
    [15] C. Y. Jung, and J. H. Oh, "Improvement of Surface Waviness by Cutting Force Control in Milling", Int. J. Mach. Tools Manufact. Vol. 31, No. 1, pp. 9-21, 1991
    [16] R. H. Guerra, S. Y. Liang, J. R. Alique, and R. H. Haber, "Fuzzy Control of Spindle Torque in High-Speed Milling Processes", Journal of Manufacturing Science and Engineering, Vol. 128, pp. 1014-1018, 2006
    [17] A. Matsubara, and I. Ibaraki, “Monitoring and control of cutting forces in machining processes: a review”, International Journal of Automation Technology, Vol. 3, No. 4, pp. 445-456, 2009
    [18] K. Dunwoody, "Automated identification of cutting force coefficients and tool dynamics on CNC machines", University of British Columbia, Vancouver, 2010
    [19] H.E. Jordan, “Energy-efficient electric motors and their applications”, Plenum, New York, 1994
    [20] E.B. Agamloh, "An evaluation of induction machine stray load loss from collated test results", IEEE Transactions on Industry Applications, Vol. 46, No.6 , pp. 2311–2318, 2010
    [21] N. Hiromu, "Principles of Precision Engineering. London", U.K.: Oxford Univ. Press, 1994
    [22] R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems", Transactions of the ASME - Journal of Basic Engineering, Vol. 82, pp. 35-45, 1960
    [23] T. Y. Kima, J. Woob, D. Shinc, and J. Kimd, "Indirect cutting force measurement in multi-axis simultaneous NC milling processes", International Journal of Machine Tools & Manufacture, Vol. 39, pp.1717-1731, 1999
    [24] S.C. Jonathan Lin, 數控工具機:SI版,高立圖書有限公司,1998
    [25] 楊英魁,Fuzzy控制,全華科技圖書股份有限公司,1991
    [26] L.A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning”, Memorandum ERL-M411 Berkely, 1973
    [27] R. E. Haber, R. H. Haber, and A. Alique, "Hierarchical Fuzzy Control of the Milling Process with a Self-Tuning Algorithm", Proceedings of the IEEE International Symposium on Intelligent Control, Patras, Greece, pp. 115–120, 2000
    [28] 蔡政穎,CNC運動控制器之最佳化NURBS曲線規劃與插值器設計,碩士論文,國立台北科技大學,2011
    [29] http://www.sciformosa.com.tw/dspace.php?tid=454, DS1104產品介紹
    [30] http://www.cpu.com.tw/kh/sensor/lem/TH3a-50a.pdf, TH3A datasheet
    [31] Y. Koren, “Cross-Coupled Biaxial Computer for Manufacturing Systems”, ASME Journal of Dynamic System, Measurement and Control, Vol. 102, No. 4, pp.265-272, 1980.

    下載圖示 校內:2018-01-01公開
    校外:2018-01-01公開
    QR CODE