| 研究生: |
蘇家豪 Su, Chia-Hao |
|---|---|
| 論文名稱: |
金奈米粒子之研究:修飾與製備 The Study of Gold Nanoparticles: Modification and Preparation |
| 指導教授: |
吳培琳
Wu, Pei-Lin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 奈米粒子 、修飾 、製備 、金 |
| 外文關鍵詞: | gold, nanoparticles, modification, preparation |
| 相關次數: | 點閱:81 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要包含兩個實驗主題(1) pH值的改變使其被修飾之金奈米粒子因氫鍵吸引力與靜電作用力造成堆疊的現象變化;(2) 利用超音波共振法製備分散性良好之金奈米粒子。
在第一個實驗主題中,我們將合成出之ω-硫醇基羧酸或ω-烷基二硫烷基羧酸與13 nm的金奈米粒子以莫耳數比1:1的方式混和,使其金奈米粒子上修飾ω-硫醇基羧酸或ω-烷基二硫烷基羧酸的分子。由實驗的結果可以發現,被修飾之金奈米粒子於含有檸檬酸鈉之溶液中且溶液之pH值為6的條件下,其金奈米粒子會因靜電吸引力與氫鍵吸引力的共同存在而形成二維之自身堆疊的結構。若將其金奈米粒子之溶液的pH值藉由加入氫氧化鈉使其改變成為11時,金奈米粒子會因於修飾分子尾端之羧基與溶液中之鈉離子形成靜電吸引力而造成聚集的現象,但此一三維結構的聚集現象亦可能是因製備穿透式電子顯微鏡的樣品時於抽乾的過程中所造成的。反之,若將金奈米粒子溶液調整至pH等於3時,則其溶液會因氫鍵吸引力的作用而使金奈米粒子產生聚集並且有沈澱產生,於穿透式電子顯微鏡下的觀察亦發現金奈米粒子之三維聚集的現象。因此我們推論,當被修飾ω-硫醇基羧酸或ω-烷基二硫烷基羧酸的金奈米粒子於pH值等於6的條件下,會因靜電吸引力與氫鍵之作用力共存而使其金奈米粒子有良好且具規則性的排列。
在超音波共振法製備金奈米粒子的實驗中,我們於4℃的環境下,利用超音波共振使氯金酸於含有檸檬酸鈉的溶液(其檸檬酸鈉之濃度大於1.9 mM)中製備出粒徑約為20 nm且分散性良好的金奈米粒子,且生成之金奈米粒子的粒徑會與溶液中之檸檬酸鈉的濃度有關。而當檸檬酸鈉於反應溶液中之濃度為0.49至1.5 mM時,其利用此製備法所生成之金奈米粒子會因反應時間的增加,其聚集的程度亦隨之增加。倘若我們改變反應時的溫度於室溫之下,則會得到與反應溫度為4℃時不同的結果。當檸檬酸鈉於反應溶液的濃度大於1.9 mM,我們觀察到反應時間為15分鐘,其金奈米粒子的生成會以塊狀聚集為主。而隨著反應時間增加至30分鐘後,其所生成之金奈米粒子則是分散與聚集共存,且生成之金奈米粒子的粒徑與溶液中之檸檬酸鈉的濃度無直接的關連性。除此之外,我們由實驗的結果推論其反應溶液中所加入之檸檬酸鈉會與溶液中之水分子經超音波震盪所生成之氫或氫氧根自由基作用形成二級之自由基,並參與金離子的還原反應。
In this study, two experiments including (1) pH dependence of Au assemblies formation by hydrogen bonding and electrostatic attraction and (2) the synthesis of gold nanoparticles by sonochemical method have been performed.
In pH dependence of Au assemblies formation study, we demonstrated that w-sulfanylalkanoic or w-alkyldisulfanylalkanoic acids can be mixed with Au colloidal solutions to result in functionalized Au colloids which exhibit developed self-assembled architectures by bonding properties as electrostatic and hydrogen-bonding interactions. As the result, Au nanoparticle assemblies resulted from the simple addition of w-sulfanylalkanoic or w-alkyldisulfanylalkanoic acids into sodium citrate contained aqueous Au colloidal solutions and the 2D arrays revealed the characteristics of the coexistence of both electrostatic and hydrogen-bonding attraction at pH 6. At pH 11, Au nanoparticles capped with carboxylate-terminated thiolates could interact with Na+ to lead to aggregates formation via electrostatic interactions in alkaline solutions, but the observed 3D arrays might also be due to coagulation during the dry-up process in the preparation of TEM samples. Under acidic conditions (pH 3), the colloidal solutions exhibited precipitation and suggested the formation of hydrogen-bonding interactions leading to 3D close-packed aggregates.
In the synthesis of gold nanoparticles by sonochemical method, a newly modified sonochemical approach was demonstrated to synthesize stable Au suspensions. The formation of Au nanoparticles with diameters of ~ 20 nm was accomplished through the ultrasonic irradiation of aqueous HAuCl4 solutions containing trisodium citrate at 4 ºC. The efficient generation in gold particles only occurred when the sufficient citrate concentrations (>1.9 mM) were reached. At low citrate concentrations ranging from 0.49 to 1.5 mM, large aggregates of coalesced Au particles were observed as sonication time increased. When the sonication was operated at room temperature, the differential particles formation was observed as compared with the results described at 4 ºC. It was observed that the particles were mainly formed as coagulation domains at 15 min sonolysis while the isolated Au colloids accompanied with aggregates morphology were attained as irradiation extended to 30 min and the prepared Au diameters showed broad distribution and no dependence of citrate dosages in particle sizes. It is proposed that citrate could transform as the reducing radicals, for the AuCl4- reduction and might also act as the stabilizer during particles formation.
1. Lehn J. M. Supramolecular Ensembles; VCH: New York, 1995.
2. Turner P., History of Photography; Exeter: New York, 1987.
3. Faraday M., Philo. Trans. R. Soc. 1875, 147, 145.
4. http://www.sc.doe.gov/production/bes/ Scale_of_Things.html
5. (a) Akamatsu K. and Deki S., J. Mater. Chem. 1998, 8, 637. (b) Deki S.; Sayo K.; Fujita, T.; Yamada, A. and Hayashi, S. J. Mater. Chem. 1999, 9, 943. (c) El-Sayed, M. A. and Wang, Z. L. J. Phys. Chem. B 1998, 102, 6145. (d) Lisiecki, I.; Kongehl, H. S.; Weiss, K.; Urban, J. and Pileni, M. P. Langmuir 2000, 16, 8802. (e) Lisiecki, I,; Kongehl, H. S.; Weiss, K.; Urban, J. and Pileni, M. P. Langmuir 2000, 16, 8807.
6. Iijima, S. Nature 1991, 354, 56.
7. Chung, S. H.; Wang, Y.; Persi, L.; Croce, F.; Greenbaum, S. G.; Scrosati, B. and Plichta, E. J. Power Sources 2001, 97, 644.
8. (a) Reddy, B. V.; Khanna, S. N. and Dunlap, B. I. Phys. Rev. Lett. 1993, 70, 3323. (b) Cox, A. J.; Louderback, J. G. and Bloomfield, L. A. Phys. Rev. Lett. 1993, 70, 923. (c) Cox, D. M.; Trevor, D. J.; Whetten, R. L.; Rohlfing, E.A. and Kaldor, A. Phys. Rev. B 1985, 32, 7290. (d) de Heer, W. A.; Milani, P. and Châtelain, A. Phys. Rev. Lett. 1990, 65, 488. (e) Bucher, J. P.; Douglass, D. C. and Bloomfield, L. A. Phys. Rev. Lett. 1991, 66, 3052.
9. Feldheim, D. L. and Foss, C. A. Jr., Ed. Metal Nanoparticles: Synthesis, Characterization, and Applications; Marcel Dekker: New York, 2002.
10. (a) Mizukoshi, Y.; Fujimoto, T.; Nagata, Y.; Oshima, R. and Maeda, Y. J. Phys. Chem. B 2000, 104, 6028. (b) Wang, Y.; Liu, H. and Toshima, N. J. Phys. Chem. 1996, 100, 19533. (c) Zhang, X. and Chan, K. Y. Chem. Mater., 2003, 15, 451.
11. 莊萬發 超微粒子理論與應用, 復漢出版社, 1994.
12. 王崇人 科學發展月刊 2002, 354, 48.
13. Yoffe, A. D. Adv. Phys. 2002, 51, 799.
14. Fendler, J. H. Chem. Rev. 1987, 87, 877.
15. Weisbuch, C.; Benisty, H. and Houdré, R. Lumin. 2000, 85, 271.
16. (a) Robert, J. G. and Robert, R. S. Surface and Colloid Science Vol. II, Plenum Press: New York and London, 1969. (b) Kruyt, H. R. Colloid Science, Elsevier Science Publishing Company inc., 1952.
17. 張有義, 郭蘭生編譯 膠體及介面化學入門, 高立圖書有限公司, 1997.
18. http://www.dwi.rwth-aachen.de/ lb/88.html.
19. van Loosdrecht, M C. M.; Lyklema, J.; Norde, W.; Zehnder A J. B. Microb. Ecol. 1989, 17, 1.
20. Schimid, G. Clusters and Colloids: From Theory to Application, New York: VCH, 1994.
21. Ritchie, C. J. Phys. Rev. 1957, 444, 396.
22. Borhren, C. F. and Huffman, D. R. Absorption and Scattering of Light by Small Particles, Wiley-Interscience, 1988.
23. Grabar, C.; Freeman, R. G.; Hommer, M. B. and Natan, M. J. Anal. Chem. 1995, 67, 735.
24. (a) Yeh, Y. H.; Yeh, M. S.; Lee, Y. P. and Yeh, C. S. Chem. Lett. 1998, 1183. (b) Yeh, M. S.; Yang, Y. S.; Lee, Y. P.; Lee, H. F.; Yeh, Y. H. and Yeh, C. S. J. Phys. Chem. B 1999,103,6851.
25. Maxwell-Garnett, J. C. Philos. Trans. R. Soc. A 1904, 203, 385.
26. Mie, G. Ann. Phys. 1908, 25, 377.
27. (a) Mulvaney, P. Langmuir, 1996, 12, 788. (b) Templeton, A. C.; Pitron, J. J.; Murry, R. W. and Mulvaney, P. J. Phys. Chem. B 2000, 104, 564.
28. (a) Majetich, A.; Artman, J. O.; McHenry, M. E.; Nuhfer, N. T. and W.Staley, S. Phys. Rev. B, 1993, 48, 16845. (b) Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; and Lestinger, R. L. J. Am. Chem. Soc., 1998, 120, 1959.
29. Bigelow, W. C.; Pickett, D. L.; Iisman, W. A. J. Colloid Interface Sci. 1946, 1, 513.
30. http://www.ifm.liu.se/applphys/biomaterial/ research/sam.html.
31. Dubois, L. H. and Nuzzo, R. G. Ann. Phys. Chem. 1992, 43,437.
32. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J. and Whyman, R. J. Chem. Soc. Commun. 1994, 801.
33. Templeton, A. C.; Wuelfing, W. P. and Murray, R. W. Acc. Chem. Res. 2000, 33, 27.
34. (a) Terill, R. H.; Postlethwaite, T. A.; Chen, C. S.; Poon, C. D.; Chen, A.; Hutchsion, J. E. and Murray, R. W. J. Am. Chem. Soc. 1995, 117, 12537. (b) Hostetler, M. J.; Stokes, J. J. and Murray, R. W. Langmuir 1996, 12, 3604.
35. Liu, J.; Mendoza, S.; Román, E.; Lynn, M. J.; Xu, R. and Kaifer, A. E. J. Am. Chem. Soc. 1999, 121, 4304.
36. (a) Tripp S. L. and Wei, A. J. Am. Chem. Soc. 2001, 123, 7955. (b) Gianini, M.; Caseri, W. R. and Suter, U. W. J. Phys. Chem. B, 2001, 105, 7399. (c) Wang, Z. L. Adv. Mater., 1998, 10, 13. (d) Wang, Z. L.; Harfenist, S. A.; Whetten, R. L.; Bentley, J. and Evans, N. D. J. Phys. Chem. B, 1998, 102, 3068. (e) Motte, L.; Billoudet, F. and Pileni, M. P. J. Phys. Chem., 1995, 99, 16425.
37. (a) Shiraishi, Y.; Arakawa, D. and Toshima, N. Eur. Phys. J. E. 2002, 8, 377. (b) Simard, J.; Briggs, C.; Boal, A. K. and Rotello, V. M. Chem. Commun. 2000, 1943. (c) Zhong, W.; Maye, M. M.; Leibowitz, F. L. and Zhong, C. J. Anal. Chem. 2000, 72, 2190. (d) Templeton, A. C.; Cliffel, D. E. and Murray, R. W. J. Am. Chem. Soc. 1999, 121, 7081. (e) Gomez, S.; Erades, L.; Philippot, K.; Chaudret, B.; Colliére, V.; Balmes, O. and Bovin, J-O. Chem. Commun., 2001, 1474; (f) Boal, A. K.; llhan, F.; DeRouchey, J. E.; Thurm-Albrecht, T.; Russell, T. P. and Rotello, V. M. Nature 2000, 404, 746. (g) Boal A. K. and Rotello, V. M. Langmuir 2000, 16, 9527. (h) Cusack, L.; Rizza, R.; Gorelov, A. and Fitzmaurice, D. Angew. Chem. Int. Ed. Engl. 1997, 36, 848.
38. (a) Grier, D. G. Nature 1998, 393, 621. (b) Adachi, E. Langmuir 2000, 16, 6460. (c) Kolny, J.; Kornowski, A. and Weller, H. Nano. Lett. 2002, 2, 361.
39. (a) Chan, W. C. W. and Nie, S. Science 1998, 281, 2016. (b) Mitchell, G. P.; Mirkin, C. A. and Lestinger, R. L. J. Am. Chem. Soc. 1999, 121, 8122.
40. (a) Johnson, S. R.; Evans, S. D. and Brydson, R. Langmuir 1998, 14, 6639. (b) Chen, S. and Kimura, K. Langmuir 1999, 15, 1075. (c) Yao, H.; Momozawa, O.; Hamatani, T. and Kimura, K. Chem. Mater. 2001, 13, 4692. (d) Weisbecker, C. S.; Merritt, M. V. and Whitesides, G. H. Langmuir 1996, 12, 3763.
41. Terrill, R. H.; Postlethwaite, T. A.; Chen, C. H.; Poon, C. D.; Terzis, A.; Chen, A.; Hutchison, J. E.; Clark, M. R.; Wignall, G.; Londono, J. D.; Superfine, R.; Falvo, M.; Johnson, C. S.; Samulski, E. T. and Murray, R. W. J. Am. Chem. Soc. 1995, 117, 12537.
42. (a) Ulman, A. Chem. Rev. 1996, 96, 1533. (b) Badia, A.; Demers, L.; Dickinson, L.; Morin, F. G.; Lennox, R. B. and Reven, L. J. Am. Chem. Soc. 1997, 119, 11104. (c) Noh, J.; Murase, T.; Nakajima, K.; Lee, H. and Hara, M. J. Phys. Chem. B 2000, 104, 7411.
43. Schmitt, H.; Badia, A.; Dickinson, L.; Reven, L. and Lennox, R. B. Adv. Mater. 1998, 10, 475.
44. (a) Badia, A.; Gao, W.; Singh, S.; Cuccia, L. and Reven, L. Langmuir 1996, 12, 1262. (b) Zelakiewicz, B. S.; de Diol, A. C. and Tong, Y. Y. J. Am. Chem. Soc. 2003, 125, 18.
45. Yin, L. and El-Sayed, M. A. Langmuir 2002, 18, 189.
46. Haruta, M. and Date, M. Applied Catalysis A-General 2001, 222, 427.
47. Bradley, J. S. The Chemistry of Transition Metal Colloids. In Clusters and Colloids; Schmid, G., Ed,; VCH: New York, 1994, 459.
48. (a) Mafuné, F.; Kohno, J. Y.; Takeda, Y.; Kondow, T. and Sawabe, H. J. Phys. Chem. B 2000, 104, 8333. (b) Mafuné, F.; Kohno, J. Y.; Takeda, Y.; Kondow, T. and Sawabe, H. J. Phys. Chem. B 2000, 104, 9111. (c) Mafuné, F.; Kohno, J. Y.; Takeda, Y.; Kondow, T. and Sawabe, H. J. Phys. Chem. B 2001, 105, 5114.
49. Chen, Y. H. and Yeh, C. S. Colloids and Surfaces A: Physicochem. Eng. Aspects 2002, 197, 133.
50. Hu, J.; Odom, T. W. and Lieber, C. M. Acc. Chem. Res. 1999, 32, 435.
51. Li, Y.; Kim, W.; Zhang, Y.; Rolandi, M.; Wang, D. and Dai, H. J. Phys. Chem. B 2001, 105, 11424.
52. Bonnemann, H.; Brijoux, W.; Brinkmann, R.; Dinjus, E.; Jouben, T. and Korall, B. Angew. Chem. Int. Ed. Engl. 1991, 30, 1312.
53. (a) Esumi, K.; Wakabayashi, M. and Torigoe, K. Colloids Surf. A 1996, 109, 55. (b) Henglein, A. and Meisei, D. Langmuir 1998, 14, 7392.
54. Reetz, M. T. and Helbig, W. J. Am. Chem. Soc. 1994, 116, 7401.
55. Yu, Y. Y.; Chang, S. S.; Lee, C. L. and Wang, C. R. C. J. Phys. Chem. B 1994, 101, 6661.
56. Pascal, C.; Pascal, J. L.; Favier, F.; Moubtassim, MLE. and Payer, C. Chem. Mater. 1999, 11, 141.
57. (a) Okitsu, K.; Bandow, H. and Maeda, Y. Chem. Mater. 1996, 8, 315. (b) Okitsu, K.; Mizukoshi, Y.; Bandow, H.; Yamamoto, T. A.; Nagata, Y. and Maeda, Y. J. Phys. Chem. B 1997, 101, 5470.
58. Shafi, K. V. P. M.; Ulman, A.; Yan, X.; Yang, N. L.; Estournés, C.; White, H. and Rafailovich, M. Langmuir, 2001, 17, 5093.
59. (a) Henglein, A. J. Phys. Chem. 1980, 84, 3461. (b) Majetich, A.; Artman, J. O.; McHenry, M. E.; Nuhfer, N. T. and Staley, S. W. Phys. Rev. B 1993, 48, 16845. (c) Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A. and Lestinger, R. L. J. Am. Chem. Soc. 1998, 120, 1959. (d) Li, Y.; Hong, X. M.; Collard, D. M. and El-Sayed, M. A. Org. Lett. 2000, 2, 2385. (e) Feldheim, D. L. and Keating, C. D. Chem. Soc. Rev., 1998, 27, 1. (f) Mukhopadhyay, K.; Phadtare, S.; Vinod, V. P.; Kumar, A.; Rao, M.; Chaudhari, R. V. and Sastry, M. Langmuir, 2003, 19, 3858.
60. (a) Yeung, S. A.; Hobson, R.; Biggs, S. and Grieser, F. J. Chem. Soc., Chem. Commun. 1993, 378. (b) Okitsu, K.; Mizukoshi, Y.; Bandow, H.; Maeda, Y.; Yamamoto, T. and Nagata, Y. Ultrason. Sonochem. 1996, 3, S249. (c) Nagata, Y.; Mizukoshi, Y.; Okitsu, K. and Maeda, Y. Radiat. Res. 1996, 146, 333. (d) Grieser, F.; Hobson, R.; Sostaric, J. and Mulvaney, P. Ultrasonics 1996, 34, 547. (e) Okitsu, K.; Yue, A.; Tanabe, S.; Matsumoto, H. and Yobiko, Y. Langmuir 2001, 17, 7717. (f) Okitsu, K.; Yue, A.; Tanabe, S.; Matsumoto, H.; Yobiko, Y. and Yoo, Y. Bull. Chem. Soc. Jpn. 2002, 75, 2289. (g) Caruso, R. A.; Ashokkumar, M. and Grieser, F. Langmuir 2002, 18, 7831. (h) Pol, V. G.; Srivastava, D. N.; Palckik, O.; Palchik, V.; Slifkin, M. A.; Weiss, A. M. and Gedanken, A. Langmuir 2002, 18, 3352. (i) Aurbach, D.; Nimberger, A.; Markovsky, B.; Levi, E.; Sominski, E. and Gedanken, A. Chem. Mater. 2002, 14, 4155. (j) Mastai, Y.; Polsky, R.; Koltypin, Y.; Gedanken, A. and Hodes, G. J. Am. Chem. Soc. 1999, 121, 10047. (k) Suslick, K. S.; Hammerton, D. A. and Cline, R. E. J. Am. Chem. Soc. 1986, 108, 5641.