| 研究生: |
周宜德 Jhou, Yi-De |
|---|---|
| 論文名稱: |
氮化物光檢測器磊晶成長與元件特性之研究 Epitaxial Growth and Device Fabrication of Nitride Based Photodetectors |
| 指導教授: |
張守進
Chang, Shoou-Jinn 蘇炎坤 Su, Yan-Kuin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 175 |
| 中文關鍵詞: | 氮化鎂 、氮化矽 、金屬有機化學氣相沈積 、氮化鎵 、光檢測器 、光二極體 、多重量子井 、光激發化學氣相沈積 、氮化鋁銦鎵 、圖案化藍寶石基版 |
| 外文關鍵詞: | AlInGaN, Photodiode, Photo-CVD, MQW, GaN, Photodetector, MOCVD, Patterned Sapphire Substrate, MgN, SiN |
| 相關次數: | 點閱:127 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們以有機金屬氣相磊晶成長系統成長三、五族氮化物化合物半導體,比較不同成長方法對其材料特性作分析,並製作紫外光波段之光檢測器。在材料分析上,首先以原子力顯微鏡、高解析度X射線繞射儀、光激發螢光光譜儀及霍爾量測系統等量測設備分析磊晶成長材料之特性。在元件特性的改進上,目標是將氮化物系列材料,應用於紫外光光檢測器元件,並藉由改進電極的透光性、主動區的材料與結構設計、多層緩衝層及基版的圖案化等方式,改進元件之特性。
在透明電極的部分,首先使用熱蒸著機系統,利用熱蒸著的方式,蒸鍍鎳/金金屬薄膜,在光激發化學氣相沈積系統,在氧氣的環境中經過適度的回火,提升金屬電極的透明度,並同時增加其金半接面之蕭特基位障高度,達到增加光子入射量,並降低元件暗電流的特性。
在主動區的結構方面,首先利用多重量子井的結構,製作發光二極體與光檢測器雙功能之元件。在順向偏壓下,元件特性為藍光發光二極體,但在逆偏操作下,元件則為光檢測器之特性。元件之發光二極體特性與光檢測器之特性,也同時被討論,並針對不同元件大小,所產生之不同元件特性加以探討。其次,利用有機金屬氣相磊晶系統,成長四元材料氮化鋁銦鎵(AlInGaN),針對在不同磊晶成長的溫度下,其材料組成與材料特性加以分析,利用其晶格匹配度較佳的特性,得到較佳的材料品質。並將其應用於紫外光光檢測器上,其元件之光檢測波段,可達280nm,即成功地將波長移動到UV-B的波段。
在多重緩衝層的研究方面,首先我們先利用低溫成長之氮化矽/氮化鎵,作為緩衝層,製作高品質、低缺陷之氮化鎵磊晶層,並將其應用至紫外光光檢測器上。低缺陷密度之氮化鎵磊晶層可降低元件之漏電流路徑,進而降低元件之暗電流。再者低缺陷密度之氮化鎵磊晶層,亦可抑制元件內部增益的效應,有效地使元件操作在更高的電壓下,同時,高品質氮化鎵磊晶材料亦有助於元件對於雜訊的抵抗,使光檢測器有較低之雜訊等效功率,進而提升檢測器之檢測率。其次,我們亦利用低溫成長之氮化鎂/氮化鎵多重緩衝層來製作高品質之氮化鎵磊晶層,低溫成長之氮化鎂/氮化鎵多重緩衝層,可降低磊晶之成核點,增加橫向磊晶成長的部分,進而降低缺陷密度,提升氮化鎵材料之磊晶品質。除此之外,利用多對之氮化鎂/氮化鎵多重緩衝層,可進一步提高氮化鎵材料之磊晶品質。將其應用於光檢測器元件上,可大幅降低元件漏電流路徑、提高金半接面之蕭特機位障高度,在光響應部分,利用多對之氮化鎂/氮化鎵多重緩衝層,亦可抑制元件照光後之內部增益,使元件不易受電壓影響,進而操作在更電壓上,在雜訊方面,此結構亦可增加元件抗雜訊之能力,降低其雜訊等效功率,增加其檢測率。
在基版方面,首先我們先利用圖案化基版的方式,在基版上製作圖案,利用磊晶的方式調整使其橫向磊晶的部分具有較低之缺陷密度,以得到高品質之氮化鎵磊晶層。在材料分析上,不論由其蝕刻凹陷密度、X射線繞射之峰值之半高寬、光激發螢光光譜以及霍爾量測之電子移動率,皆可證明其磊晶品質獲得改善。將其運用在元件上,亦可提升其金半接面之蕭特基位障高度,增加元件光響應對電壓的抵抗能力,以及在雜訊上能力的提升,進而提升檢測率。最後我們利用黃光微影的技術,在基版上製作凹槽,利用兩次橫向成長,以期得到高品質之氮化鎵磊晶材料,由掃瞄式電子顯微鏡、穿透式電子顯微鏡以及陰極發光光譜分析結果,證明此一方法確實降低氮化鎵磊晶材料之缺陷密度。
In this dissertation, the III-V nitride-based compound semiconductors had grown by metal organic vapor phase epitaxy (MOCVD). The different way to grow the high quality GaN epitaxial layer was carried out and then applied in UV photo-detection. In the material analysis, the atomic force microscopy (AFM), high resolution X-ray diffraction (HRXRD), photoluminescence (PL) and Hall measurement were employed to confirm the epitaxial quality. As the improvement of device performance, the utilizing of GaN-based material to the UV detection was the main goal. It could be achieved by using transparent metal contact, the new material and structure in active layer, multiple buffer layers and patterned sapphire substrate.
In the part of the transparent contact layer, the Ni/Au metal layer was deposited by thermal evaporator and then annealed in oxygen by photo-CVD system. It would not only increase the transparent of the metal contact layer but also improve the Schottky barrier height between the metal and semiconductor. In the other word, it would result in a more incident photon and lower dark current for the device.
In the active region, first, the light emitting diode and photodetector double function device was fabricated by using multiple quantum well structure. Under forward bias, the device exhibited the properties of typical blue light emitting diode. Under the reverse bias, the device showed the photodetector properties. The characteristics of light emitting diode and photodetector were both discussed. The area and size of devices were also studied in light emitting diode and photodetector. Moreover, the quaternary AlInGaN was developed by using MOCVD system. The as-grown epitaxial quality and composition at different growth temperature were also analyzed. The higher quality of material would be obtained with the improvement of lattice mismatch between the AlInGaN and GaN layer. Then it would be applied into the photodetector and the 280nm cut-off region was fitted in the UV-B region.
The multiple buffer layers were also employed in this dissertation. The low temperature growth SiN/GaN buffer layer was introduced to obtain a high quality and low threading dislocation density GaN epitaxial film. And then it would be applied in the UV light detection. The low threading dislocation density and high quality GaN film could reduce the path of leakage current and diminished the dark current of fabricated photodetector. Moreover, the low threading dislocation density GaN film was discovered to suppress the internal gain of device and suggested to high power operation. At the same time, the high quality epitaxial film could also be helpful to the resistance of noise. It can decrease the noise equivalent power and increase the detectivity of the photodetector. Otherwise, the low temperature MgN/GaN multiple buffer layer were also utilized to manufacture high quality GaN epitaxial layer. The low temperature growth MgN/GaN multiple buffer layers could reduce the nuclei sites of the sapphire substrate and resulted in the enhancement of lateral growth. As well known, the lateral growth would decrease the threading dislocation density and increase the epitaxial quality of the GaN thin film upon buffer layer. As applied to the photodetector, it could drop the path of leakage current of the device and increase the Schottky barrier height. As to the response, the multi-pair MgN/GaN buffer layer also could suppress the internal gain under illumination. In the other word, it would be independent on the voltage applied in the device and indicate that it would potentially use in high power application. This structure also improved the capability of noise. The noise equivalent power could be reduced and the detectivity would be promoted.
The patterned sapphire substrate was also employed. First, the patterned substrate was fabricated. Then the low threading dislocation density GaN epitaxial film could be finished with adjusting the lateral growth when it grew. The enhan cement of epitaxial quality would be proved by material analysis such as etching pits density, FWHM of X-ray, PL spectrum, and electron mobility by Hall measurement. When it applied to the photodetector, it could increase the Schottky barrier height between the metal contact and semiconductor, enhance the property of voltage resistance of device, and promote the resistance capability of noise.
The last part of this dissertation, we proposed a novel selective growth technique. The patterned was finished by standard lithography technique. With our design, the growth of GaN would have twice lateral growth and obtain a very high quality GaN thin film. Owing to the scan electron microscopy (SEM), tunnel electron microscopy (TEM) and cathode luminescence (CL) analysis, it could be prove that this way would be work.
[1] H. Morkoe, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies”, J. Appl. Phys, Vol. 76, pp. 1363-1398, 1994.
[2] L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars, and U. K. Mishra, “AlGaN/GaN heterojunction bipolar transistor”, IEEE Electron Dev. Lett., Vol. 20, pp. 277-279, 1999
[3] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and K. T. Ilson, “Metal semiconductor field effect transistor based on single crystal GaN”, Appl. Phys. Lett, Vol. 62, pp. 1786-1787, 1993
[4] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm, and M. S. Shur, “Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor”, Appl. Phys. Lett. Vol. 65, pp. 1121-1123, 1994.
[5] Y. F. Wu, B. P. Keller, P. Fini, S. Keller, T. J. Jenkins, L. T. Kehias, S. P. Denbaars, and U. K. Mishra, “High Al-content AlGaN/GaN MODFET’s for ultrahigh performance”, IEEE Electron Dev. Lett., Vol. 19, pp. 50-53, 1998
[6] J. D. Brown, J. T. Swindell, M. A. L. Johnson, Yu Zhonghai, J. F. Schetzina, G. E. Bulman, K. Doverspike, S. T. Sheppard, T. W. Weeks, M. Leonard, H. S. Kong, H. Dieringer, C. Carter, and J. A. Edmond, Nitride Semiconductor or Symposium, Matt. Res. Soc., pp1179, 1998.
[7] Y. Matsushita, T. Uetani, T. Kunisato, J. Suzuki, Y. Ueda, K. Yagi, T. Yamaguchi, and T. Niina, Jpn. J. Appl. Phys., Part 1 Vol. 34, pp. 1833, 1995.
[8] M. A. Haase, J. Qinu, J. M. Depuydt, and H. Cheng, “Blue-green laser diodes”, Appl. Phys. Lett., Vol. 59, pp. 1272, 1991.
[9] H. Jeon, J. Ding, A. V. Nurmikko, W. Xie, D. C. Grillo, M. Kobayashi, R. L. Gunshor, G. C. Hua, and N. Otsuka, “Blue and green diode lasers in ZnSe-based quantum wells”, Appl. Phys. Lett., Vol. 60, pp. 2045, 1992.
[10] W. Xie, D. C. Grillo, R. L. Gunshor, M. Kobayashi, H. Jeon, J. Ding, A. V. Nurmikko, G. C. Hua, and N. Otsuka, “Room temperature blue light emitting p-n diodes from Zn(S,Se)-based multiple quantum well structures”, Appl. Phys. Lett., Vol. 60, pp. 1999, 1992.
[11] H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystal-line GaN”, Appl. Phys. Lett., 15, 327, 1969.
[12] H. M. Manasevit, F. M. Erdmann, and W. I. Simpson, “The use of metalorganics in the preparation of semiconductor materials”, J. Electrochem. Soc., Vol. 118, pp. 1864,1971.
[13] I. Akasaki et al. MITI report in Japanse only, 1974.; I. Akasaki, and I. Hayashi, Ind. Sci. Technol., Vol. 17, pp. 48, 1976.
[14] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett., Vol. 48, pp. 353, 1986.
[15] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)”, Jpn. J. Appl. Phys., Vol. 28, pp. L2112, 1989.
[16] S. Nakamura, T. Mukai, M. Senoh, and M. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films”, Jpn. J. Appl. Phys., Vol. 31, pp. L139, 1992.
[17] M. Razeghi, and A. Rogalski, “Semiconductor ultraviolet detectors”, J. Appl. Phys., Vol. 79, pp. 7433, 1996.
[18] E. Monroy, E. Muňoz, F. J. Sánchez, F. Calley, E. Calleja, B. Beaumont, P. Gibart, J. A. Muňoz and F. Cussó, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications”, Semicond. Sci. Technol., Vol. 13, pp. 1042-1046, 1998
[19] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç¸ G. Smith, M. Estes, B. Goldenberg, W. Yang and S. Krishnankutty, “High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures”, Appl. Phys. Lett., Vol. 71, pp. 2154-2156, 1997
[20] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Low niose p-π-n GaN ultraviolet photodetectors”, Appl. Phys. Lett., Vol. 71, pp. 2334-2336, 1997.
[21] J. J. Horng, Y. K. Su, S. J. Chang, T. K. Ko, S. C. Shei, “Nitride-based Schottky barrier sensor module with high electrostatic discharge reliability”, IEEE Photon. Technol. Lett., Vol. 19, pp. 717-719, 2007.
[22] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, J. F. Chen, "GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts", IEEE Photon. Technol. Lett., Vol. 13, pp. 848-850, 2001.
[23] E. F. Schubert, Cambridge University Press, 2003.
[24] H. Amano, I. Akasaki, K. Hiramatsu, and N. Koide, “Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate”, Thin Solid Films, Vol. 163, pp. 415, 1988.
[25] I. Akasaki, H. Amao, Y. Koide, K. Hiramatsu, and N. Sawaki, “Effects of ain buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1−xAlxN (0 < x 0.4) films grown on sapphire substrate by MOVPE”, J. Cryst. Growth, Vol. 98, pp. 209, 1989.
[26] S. Nakamura, “GaN Growth Using GaN Buffer Layer”, Jpn. J. Appl. Phys., Vol. 30, pp. L1705, 1991.
[27] S. Nakamura, Y. Harada, and M. Seno, “Novel metalorganic chemical vapor deposition system for GaN growth”, Appl. Phys. Lett. Vol. 58, pp. 2021, 1991.
[28] R. S. Kern, W. Goetz, and C. Kuo, US patent NO. 6274399, 2001.
[29] S. Sakai, H. Sunakawa, and A. Usui, “Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy”, Jpn. J. Appl. Phys. Vol. 36, pp. L899, 1997.
[30] S. Sakai, H. Sunakawa, and A. Usui, “Defect structure in selectively grown GaN films with low threading dislocation density”, Appl. Phys. Lett., Vol. 71, pp. 2259, 1997.
[31] C.H. Chen, S.J. Chang, Y.K. Su, G.C. Chi, J.K. Sheu, F. Chen, “High-efficiency InGaN-GaN MQW green light-emitting diodes with CART and DBR structures”, IEEE, J. Selected Topics Quan. Electron. Vol..8 pp. 284, 2002.
[32] C.H. Chen, Y.K. Su, S.J. Chang, G.C. Chi, J.K. Sheu, J.F. Chen, C.H. Liu, H. Liaw, “High brightness green light emitting diodes with charge asymmetric resonance tunneling structure”, IEEE Electron. Dev. Lett. Vol. 23, pp. 130, 2002.
[33] C.H. Chen, S.J. Chang, Y.K. Su, G.C. Chi, J.K. Sheu, C. Lin, “Vertical High Quality Mirrorlike Facet of GaN-Based Device by Reactive Ion Etching”, Jpn J. Appl. Phys. Vol. 40, pp. 2762, 2001.
[34] L.C. Chen, F.R. Chen, J.J. Kai, L. Chang, J.K. Ho, C.S. Jong, C.C. Chiu, C.N. Huang, C.Y. Chen, K. Shih, “Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN”, J. Appl. Phys., Vol. 86, pp. 3826, 1999.
[35] Kamiyama, S., Iwaya, M., Hayashi, N., Takeuchi, T., Amano, H., Akasaki, I., Watanabe, S., Kaneko, Y., and Yamada, N., “Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure”, J. Cryst. Growth, Vol. 223, p. 83, 2001
[36] Han, J., Waldrip, K.E., Lee, S.R., Figiel, J.J., Hearne, S.J., Petersen, G.A., and Myers, S.M., “Control and elimination of cracking of AlGaN using low-temperature AlGaN interlayers”, Appl. Phys. Lett., Vol. 78, pp. 67, 2001.
[37] Hirayama, H., Kinoshita, A., Yamabi, T., Enomoto, Y., Hirata, A., Araki, T., Nanishi, Y., and Aoyagi, Y., “Marked enhancement of 320–360 nm ultraviolet emission in quaternary InxAlyGa1–x–yN with In-segregation effect” Appl. Phys. Lett., Vol. 80, pp. 207, 2002.
[38] Hirayama, H., “Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes”, J. Appl. Phys., Vol. 97, pp. 091101, 2005.
[39] Lai, W.C., Chang, S.J., Yokoyam, M., Sheu, J.K., and Chen, J.F., “InGaN-AlInGaN multiquantum-well LEDs”, IEEE Photon. Technol. Lett., Vol. 13, pp. 559, 2001.
[40] Kyono, T., Hirayama, H., Akita, K., Nakamura, T., and Ishibashi, K., “Effects of In composition on ultraviolet emission efficiency in quaternary InAlGaN light-emitting diodes on freestanding GaN substrates and sapphire substrates”, J. Appl. Phys., Vol. 98, pp. 113514, 2005.
[41] Li, J., Nam, K.B., Kim, K.H., Lin, J.Y., and Jiang, H.X., “Growth and optical properties of InxAlyGa1–x–yN quaternary alloys”, Appl. Phys. Lett., Vol. 78, pp. 61, 2001.
[42] Nagahama, S., Yanamoto, T., Sano, M., and Mukai, T., “Characteristics of Ultraviolet Laser Diodes Composed of Quaternary AlxInyGa(1-x-y)N”, Jpn. J. Appl. Phys., Vol. 40, pp. L788, 2001.
[43] Nagahama, S., Yanamoto, T., Sano, M., and Mukai, T., “Study of GaN-based Laser Diodes in Near Ultraviolet Region”, Jpn. J. Appl. Phys., Vol. 41, pp. 5, 2001.
[44] Baek, S.H., Kim, J.O., Kwon, M.K., Park, I.K., Na, S.I., Kim, J.Y., Kim, B., and Park, S.J., “Enhanced carrier confinement in AlInGaN-InGaN quantum wells in near ultraviolet light-emitting diodes”, IEEE Photon. Technol. Lett., 2006, Vol.18, pp. 1276, 2006.
[45] Kuo, C.H., Lin, C.C., Chang, S.J., Hsu, Y.P., Tsai, J.M., Lai, W.C., and Wang, P.T., “Nitride-based light-emitting diodes with p-AlInGaN surface layers”, IEEE Trans. Electron. Devices, Vol. 52, pp. 2346, 2006.
[46] Wang, T., Liu, Y.H., Lee, Y.B., Ao, J.P., Bai, J., and Sakai, S., “1 mW AlInGaN-based ultraviolet light-emitting diode with an emission wavelength of 348 nm grown on sapphire substrate”, Appl. Phys. Lett., Vol. 81, pp. 2508, 2002.
[47] Yasan, A., McClintock, R., Mayes, K., Darvish, S.R., Kung, P., and Razeghi, M., “Top-emission ultraviolet light-emitting diodes with peak emission at 280 nm”, Appl. Phys. Lett., Vol. 81, pp. 801, 2002.
[48] Khan, M.A., Adivarahan, V., Zhang, J.P., Chen, C.Q., Kuokstis, E., Chitnis, A., Shatalov, M., Yang, J.W., and Simin, G., “Stripe Geometry Ultraviolet Light Emitting Diodes at 305 Nanometers Using Quaternary AlInGaN Multiple Quantum Wells”, Jpn. J. Appl. Phys., Vol. 40, pp.L1308, 2001.
[49] Shatalov, M., Chitnis, A., Adivarahan, V., Lunev, A., Zhang, J., Yang, J.W., Fareed, Q., Simin, G., Zakheim, A., and Khan, M.A., “Band-edge luminescence in quaternary AlInGaN light-emitting diodes”, Appl. Phys. Lett., Vol.78, pp. 817,2001.
[50] Liu, Y., Jiang, H., Arulkumaran, S., Egawa, T., Zhang, B., and Ishikawa, H., “Demonstration of undoped quaternary AlInGaN/GaN heterostructure field-effect transistor on sapphire substrate”, Appl. Phys. Lett., Vol.86, pp. 223510, 2005.
[51] S. Nakamura, “Analysis of Real-Time Monitoring Using Interference Effects”, Jpn. J. Appl. Phys., vol. 30, pp. 1348, 1991.
[52] H. Amano, I. Akasak, K. Hiramatsu and N. Koide, “Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate”, Thin Solid Film, vol. 163, pp. 415, 1998.
[53] S. L, Wright, T. N. Jackson, and R. F. Marks, “Apparent temperature oscillations during molecular-beam epitaxy: A useful interferometric effect”, J. Vac. Sci. & Technol. B Vol. 8, pp. 288, 1990.
[54] W. G. Breiland and K. P. Killeen, “A virtual interface method for extracting growth rates and high temperature optical constants from thin semiconductor films using in situ normal incidence reflectance”, J. Appl. Phys., Vol.78, pp.6726, 1995.
[55] S. A. Safvi, J. M. Redwing, M. A. Tischler, and T. F. Kuech, “GaN Growth by Metallorganic Vapor Phase Epitaxy”, J. Electrochem. Soc., Vol.144, pp.1789, 1997.
[56] J. R. Creighton, G. T. Wang, W. G. Breiland, and M. E. Coltrin, “Nature of the parasitic chemistry during AlGaInN OMVPE”, J. Cryst. Growth, Vol. 261, pp. 204, 2004.
[57] T. G. Mihopoulos, Reaction and Transport Processes in OMCVD: Selective and Group III-Nitride Growth. Ph.D thesis, Massachusetts Institute of technology, 1999.
[58] R. P. Parikh, and R. A. Adomaitis, “An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system”, J. Cryst. Growth, Vol. 286, pp.259, 2006.
[59] E. Mesic, M. Mukinovic, and G. Brenner, “Numerical study of AlGaN growth by MOVPE in an AIX200 RF horizontal reactor”, Comp. Mater. Sci., Vol. 31, pp. 42, 2004.
[60] A. Hirako, K. Kusakabe, and K. Ohkawa, “Modeling of Reaction Pathways of GaN Growth by Metalorganic Vapor-Phase Epitaxy Using TMGa/NH3/H2 System: A Computational Fluid Dynamics Simulation Study”, Jpn. J. Appl. Phys., Vol. 44, pp. 874, 2005.
[61] J. R. Creighton, G. T. Wang, and M. E. Coltrin, “Fundamental chemistry and modeling of group-III nitride MOVPE”, J. Cryst. Growth, Vol. 298, pp.2, 2007.
[62] D. F. Davidson, K. Khose-Hoeinghaus, A. Y. Chang, and R. K. Hanson, Int. J. Chem. Kinet., Vol. 22, pp.513, 1990.
[63] R. P. Parikh, and R. A. Adomaitis, “Nitrogen precursors in metalorganic vapor phase epitaxy of (Al,Ga)N”, J. Cryst. Growth, Vol.156, pp.140, 1995.
[64] W. D. Monnery, K. A. Hawboldt, A. E. Pollock, and W. Y. Svrcek, Ind. Eng. Chem. Res., Vol. 40, pp.144, 2001.
[65] V. S. Ban, “Mass Spectrometric Studies of Vapor-Phase Crystal Growth”, J. Electrochem. Soc., Vol.119, pp.761, 1972.
[66] S. S. Liu, D. A. Stevenson, “Growth Kinetics and Catalytic Effects in the Vapor Phase Epitaxy of Gallium Nitride”, J. Electrochem. Soc., Vol.125, pp.1161, 1978.
[67] M. G. Jacko, and S. J. W. Proce, Can. J. Chem., Vol.41, pp.1560, 1962.
[68] S. P. DenBaars, B. Y. Maa, P. D. Dapkus, A. D. Danner, and H. C. Lee, “Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD”, J. Cryst. Growth, Vol.77, pp.188, 1986.
[69] A. Thon, and T. F. Kuech, “High temperature adduct formation of trimethylgallium and ammonia”, Appl. Phys. Lett., Vol.69, pp.55, 1996.
[70] J. B. Williams, The Lewis Acid-Base Concepts: An Overview, Wiley, New York, 1980.
[71] P. W. Atkins, Physical Chemistry, seventh ed., Freeman, New York, 2002.
[72] G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy: “Theory and Practice”, 2nd Edition, Academic, Press, San Diego, 1999.
[73] M. Razeghi, A. Rogalski, “Semiconductor ultraviolet detectors”, J.Appl. Phys. Vol.79 pp.7433, 1996.
[74] G. Parish, S. Keller, P. Kozodoy, J.A. Ibbetson, H. Marchand, P.T. Fini, S.B. Fleischer, S.P. DenBaars, K. Mishra, “High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett. Vol.75, pp.247, 1999.
[75] E. Monroy, M. Hamilton, D. Walker, P. Kung, F.J. Sa´nchez, M. Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes”, Appl. Phys. Lett. Vol.74 pp.1171, 1999.
[76] S.L. Rumyantsev, N. Pala, M.S. Shur, R. Gaska, M.E. Levinshtein, V. Divarahan, J. Yang, G. Simin, A. Khan, “Low-frequency noise in Al0.4Ga0.6N-based Schottky barrier photodetectors”, Appl. Phys. Lett. Vol.79 pp.866, 2001.
[77] C.H. Chen, S.J. Chang, Y.K. Su, G.C. Chi, J.Y. Chi, C.A. Chang, J.K. Sheu, F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts”, IEEE Photon Technol. Lett. Vol.13 pp.848, 2001.
[78] D.G. Parker, G. Say, “Indium tin oxide/GaAs photodiodes for millimetric-wave applications”, Electron. Lett. Vol.22 pp.1266, 1998.
[79] T. Maeda, Y. Koide, M. Murakami, “Effects of NiO on electrical properties of NiAu-based ohmic contacts for p-type GaN”, Appl. Phys. Lett. Vol.75 pp.4145, 1999.
[80] J.K. Ho, C.S. Jong, C.C. Chiu, C.N. Huang, C.Y. Chen, K. Shih, “Low-resistance ohmic contacts to p-type GaN”, Appl. Phys. Lett. Vol.74 pp.1275, 1999.
[81] D. Qiao, L.S. Yu, S.S. Lau, J.Y. Lin, H.X. Jiang, E. Haynes, “A study of the Au/Ni ohmic contact on p-GaN”, J. Appl. Phys. Vol.88, pp.4196, 2000.
[82] J.M. Redwing, M.A. Tischler, J.S. Flynn, S. Elhamri, M. Ahoujja, R.S. Newrock, C. Mitchel, “Two-dimensional electron gas properties of AlGaN/GaN heterostructures grown on 6H–SiC and sapphire substrates”, Appl. Phys. Lett. Vol. 69, pp. 963, 1996.
[83] S. Keller, G. Parish, P.T. Fini, S. Heikman, C.H. Chen, N. Zhang, S.P. DenBaars, U.K. Mishra, F. Wu, “Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures”, J. Appl. Phys. Vol.86, pp.5850, 1999.
[84] G.Y. Zhao, H. Ishikawa, T. Egawa, T. Jimbo, M. Umeno, “High-Mobility AlGaN/GaN Heterostructures Grown on Sapphire by Metal-Organic Chemical Vapor Deposition”, Jpn J. Appl. Phys. Vol.39, pp.1035, 2000.
[85] C.H. Chen, S.J. Chang, Y.K. Su, G.C. Chi, J.K. Sheu, F. Chen, “High-efficiency InGaN-GaN MQW green light-emitting diodes with CART and DBR structures”, IEEE, J. Selected Topics Quan. Electron. Vol.8, pp. 284, 2002.
[86] C.H. Chen, Y.K. Su, S.J. Chang, G.C. Chi, J.K. Sheu, J.F. Chen, C.H. Liu, H. Liaw, “High brightness green light emitting diodes with charge asymmetric resonance tunneling structure”, IEEE Electron. Dev. Lett. Vol.23, pp.130, 2002.
[87] C.H. Chen, S.J. Chang, Y.K. Su, G.C. Chi, J.K. Sheu, C. Lin, “Vertical High Quality Mirrorlike Facet of GaN-Based Device by Reactive Ion Etching”, Jpn J. Appl. Phys. Vol.40, pp.2762, 2002.
[88] L.C. Chen, F.R. Chen, J.J. Kai, L. Chang, J.K. Ho, C.S. Jong, C.C. Chiu, C.N. Huang, C.Y. Chen, K. Shih, “Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN”, J. Appl. Phys. Vol.86, pp.3826, 1999.
[89] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes”, IEEE J Sel Top Quantum Electron. Vol.8, pp.278, 2002.
[90] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors”, IEEE Photon Technol Lett. Vol.15, pp.18, 2003.
[91] S. J. Chang, L. W. Wu, Y. K. Su, C. H. Kuo, W. C. Lai, Y. P. Hsu, J. K. Sheu, J. F. Chen, J. M. Tsai, “Si and Zn co-doped InGaN-GaN white light-emitting diodes”, IEEE Trans Electron Dev. Vol.50, pp.519, 2003.
[92] S. M. Sze, Physics of semiconductor devices. 2nd ed. New York: Wiley; 1981.
[93] S. D. Levetas, M. J. Ludowise, K. P. Killeen, B. H. Perez, J. N. Miller, and S. J. Rosner, “High-efficiency InGaN MQW blue and green LEDs”, J Cryst Growth Vol.189, pp. 786, 1998.
[94] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, and U. K. Mishra “High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN”, Appl Phys Lett. Vol.75, pp.247, 1999.
[95] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, and M. Asif Khan “Schottky barrier detectors on GaN for visible–blind ultraviolet detection”, Appl Phys Lett. Vol.70, pp.2277, 1997.
[96] Z. M. Zhao, R. L. Jiang, P. Chen, D. J. Xi, Z. Y. Luo, R. Zhang, B. Shen, Z. Z. Chen, and Y. D. Zheng “Metal–semiconductor–metal GaN ultraviolet photodetectors on Si(111)”, Appl Phys Lett, Vol.77, pp.444, 2000.
[97] Z. C. Huang, J. C. Chen, and D. Wickenden, “Characterization of GaN using thermally stimulated current and photocurrent spectroscopies and its application to UV detectors”, J Cryst Growth Vol.170, pp.362, 1997.
[98] J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou and C. M. Chang, “Effects of thermal annealing on the indium tin oxide Schottky contacts of n-GaN”, Appl Phys Lett. Vol.72, pp.3317, 1998.
[99] N. Mori, “Superconductivity in transparent Sn-doped In2O3 films”, J Appl Phys. Vol.73, pp.1327, 1993.
[100] S. M. Sze, Semiconductor devices physics and technology, Wiley.
[101] B. Gil, Low-dimensional nitride semiconductors, Oxford.
[102]S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes”, J. Appl. Phys., Vol. 76, pp. 8189, 1994.
[103] I. Akasaki, and H. Amano “Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters”, Jpn. J. Appl. Phys., Vol.36, pp. 5393, 1997.
[104] E. F. Schubert, and J. K. Kim, “Solid-state light sources getting smart”, Science, Vol. 308, pp. 1274, 2005.
[105] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes”, IEEE J. Sel. Top Quant. Electron., Vol.8, pp. 278,2002.
[106] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes”, IEEE J. Sel. Top Quant. Electron., Vol.8, pp. 744, 2002.
[107] C. K. Wang, S. J. Chang, Y. K. Su, Y. Z. Chiou, S. C. Chen, C. S. Chang, T. K. Lin, H. L. Liu, and J. J. Tang, “GaN MSM UV photodetectors with titanium tungsten transparent electrodes”, IEEE Trans. Electron. Devices, Vol.53, pp. 38, 2006.
[108] E. Monroy, T. Palacios, O. Hainaut, F. Omnes, F. Calle, and J. F. Hochedez, “Assessment of GaN metal–semiconductor–metal photodiodes for high-energy ultraviolet photodetection”, Appl. Phys. Lett., Vol. 80, pp. 3198, 2002.
[109] T. Tut, M. Gokkavas, B. Butun, S. Butun, E. Ulker, and E. Ozbay , “Experimental evaluation of impact ionization coefficients in AlxGa1−xN based avalanche photodiodes”, Appl. Phys. Lett., Vol. 89, pp. 183524, 2006
[110] H. Jiang, and T. Egawa, “Demonstration of large active area AlGaN solar-blind Schottky photodiodes with low dark current”, Electron. Lett., Vol. 42, pp. 1120, 2006.
[111] E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut, and O. Aytur, “High-performance solar-blind photodetectors based on Al/sub x/Ga/sub 1-x/N heterostructures”, IEEE J. Sel. Top Quant. Electron., Vol. 10, pp. 742, 2004.
[112] R. McClintock, A. Yasan, K. Mayes, D. Shiell, S. R. Darvish, P. Kung, and M. Razeghi, “High quantum efficiency AlGaN solar-blind p-i-n photodiodes”, Appl. Phys. Lett., Vol. 84, pp. 1248, 2004.
[113] I. S. Seo, I. H. Lee, Y. J. Park, and C. R. Lee, “Characteristics of UV photodetector fabricated by Al0.3Ga0.7N/GaN heterostructure”, J. Cryst. Growth, Vol. 252, pp. 51, 2003
[114] P. Sandvik, K. Mi, F. Shahedipour, R. McClintock, A. Yasan, P. Kung, and M. Razeghi, “AlxGa1−xN for solar-blind UV detectors”, J. Cryst. Growth, Vol. 231, pp. 366, 2001.
[115] S. J. Chang, T. K. Ko, Y. K. Su, Y. Z. Chiou, C. S. Chang, S. C. Shei, J. K. Sheu, W. C. Lai, Y. C. Lin, W. S. Chen, and C. F. Shen, “GaN-based p-i-n sensors with ITO contacts”, IEEE Sens. J., Vol. 6, pp. 406, 2006.
[116] S. Kamiyama, M. Iwaya, N. Hayashi, T. Takeuchi, H. Amano, I. Akasaki, S. Watanabe, Y. Kaneko, and N. Yamada, “Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure”, J. Cryst. Growth, Vol. 223, pp. 83, 2001.
[117] J. Han, K. E. Waldrip, S. R. Lee, J. J. Figiel, S. J. Hearne, G. A. Petersen, and S. M. Myers “Control and elimination of cracking of AlGaN using low-temperature AlGaN interlayers”, Appl. Phys. Lett., Vol. 78, pp. 67, 2001.
[118] M. Asif Khan, R. A. Skogman, J. M. Van Hove, D. T. Olson, and J. N. Kuznia “Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition”, Appl. Phys. Lett., Vol. 60, pp. 1366, 1992.
[119] J. P. Zhang, M. Asif Khan, W. H. Sun, H. M. Wang, C. Q. Chen, Q. Fareed, E. Kuokstis, and J. W. Yang “Pulsed atomic-layer epitaxy of ultrahigh-quality AlxGa1–xN structures for deep ultraviolet emissions below 230 nm”, Appl. Phys. Lett., Vol. 81, pp. 4392, 2002.
[120] H. Hirayama, A. Kinoshita, T. Yamabi, Y. Enomoto, A. Hirata, T. Araki, Y. Nanishi, and Y. Aoyagi, “Marked enhancement of 320–360 nm ultraviolet emission in quaternary InxAlyGa1–x–yN with In-segregation effect”, Appl. Phys. Lett., Vol. 80, pp. 207, 2002.
[121] H. Hirayama, “Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes”, J. Appl. Phys., Vol. 97, pp. 091101, 2005.
[122] W. C. Lai, S. J. Chang, M. Yokoyam, J. K. Sheu, and J. F. Chen, “InGaN-AlInGaN multiquantum-well LEDs”, IEEE Photon. Technol. Lett., 2001, Vol. 13, pp. 559, 2001.
[123] T. Kyono, H. Hirayama, K. Akita, T. Nakamura, and K. Ishibashi, “Effects of In composition on ultraviolet emission efficiency in quaternary InAlGaN light-emitting diodes on freestanding GaN substrates and sapphire substrates”, J. Appl. Phys., Vol. 98, p. 113514, 2005.
[124] J. Li, K. B. Nam, K. H. Kim, J. Y. Lin, and H. X. Jiang, “Growth and optical properties of InxAlyGa1–x–yN quaternary alloys”, Appl. Phys. Lett., Vol. 78, p. 61, 2001.
[125] S. Nagahama, T. Yanamoto, M. Sano, and T. Mukai, “Characteristics of Ultraviolet Laser Diodes Composed of Quaternary AlxInyGa(1-x-y)N”, Jpn. J. Appl. Phys., Vol. 40, pp. L788, 2001.
[126] S. Nagahama, T. Yanamoto, M. Sano, and T. Mukai, “Study of GaN-based Laser Diodes in Near Ultraviolet Region”, Jpn. J. Appl. Phys., Vol. 41, pp. 5, 2002.
[127] S. H. Baek, J. O. Kim, M. K. Kwon, I. K. Park, S. I. Na, J. Y. Kim, B. Kim, and S. J. Park, “Enhanced carrier confinement in AlInGaN-InGaN quantum wells in near ultraviolet light-emitting diodes”, IEEE Photon. Technol. Lett., Vol. 18, pp. 1276, 2006.
[128] C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai, and P. T. Wang, “Nitride-based light-emitting diodes with p-AlInGaN surface layers”, IEEE Trans. Electron. Devices, Vol. 52, pp. 2346, 2005.
[129] T. Wang, Y. H. Liu, Y. B. Lee, J. P. Ao, J. Bai, and S. Sakai, “1 mW AlInGaN-based ultraviolet light-emitting diode with an emission wavelength of 348 nm grown on sapphire substrate”, Appl. Phys. Lett., Vol. 81, pp. 2508, 2002.
[130] A. Yasan, R. McClintock, K. Mayes, S. R. Darvish, P. Kung, and M. Razeghi, “Top-emission ultraviolet light-emitting diodes with peak emission at 280 nm”, Appl. Phys. Lett., Vol. 81, pp. 801, 2002.
[131] M. A. Khan, V. Adivarahan, J. P. Zhang, C. Q. Chen, E. Kuokstis, A. Chitnis, M. Shatalov, J. W. Yang, and G. Simin, “Stripe Geometry Ultraviolet Light Emitting Diodes at 305 Nanometers Using Quaternary AlInGaN Multiple Quantum Wells”, Jpn. J. Appl. Phys., Vol. 40, pp.L1308, 2001.
[132] M. Shatalov, A. Chitnis, V. Adivarahan, A. Lunev, J. Zhang, J. W. Yang, Q. Fareed, G. Simin, A. Zakheim, M. Asif Khan, R. Gaska, and M. S. Shur, “Band-edge luminescence in quaternary AlInGaN light-emitting diodes”, Appl. Phys. Lett., Vol. 78, pp. 817, 2001.
[133] Y. Liu, H. Jiang, S. Arulkumaran, T. Egawa, B. Zhang, and H. Ishikawa “Demonstration of undoped quaternary AlInGaN/GaN heterostructure field-effect transistor on sapphire substrate”, Appl. Phys. Lett., Vol. 86, pp. 223510, 2005.
[134] S. J. Chang, C. S. Chang, Y. K. Su, C. T. Lee, W. S. Chen, C. F. Shen, Y. P. Hsu, S. C. Shei, and H. M. Lo, “Nitride-based flip-chip ITO LEDs”, IEEE Trans. Adv. Packag., Vol. 28, pp. 273, 2005.
[135] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin, and J. C. Ke, “Highly reliable nitride-based LEDs with SPS+ITO upper contacts”, IEEE J. Quant. Electron., Vol. 39, pp. 1439, 2003.
[136] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu, and C. T. Lee, “Nitride-based LEDs with 800/spl deg/C grown p-AlInGaN-GaN double-cap layers”, IEEE Photon. Technol. Lett., Vol. 16, pp. 1447, 2004.
[137] L. W. Wu, S. J. Chang, Y. K. Su, R. W. Chuang, Y. P. Hsu, C. H. Kuo, W. C. Lai, T. C. Wen, J. M. Tsai, J. K. Sheu, “In0.23Ga0.77N/GaN MQW LEDs with a low temperature GaN cap layer”, Solid State Electron., Vol. 47, pp. 2027, 2003.
[138] Y. K. Su, S. J. Chang, S. C. Wei, S. M. Chen, and W. L. Li, “ESD engineering of nitride-based LEDs”, IEEE Trans. Device Mater. Reliab., Vol. 5, pp. 277, 2005.
[139] I-hsiu Ho and G. B. Stringfellow “Solid phase immiscibility in GaInN”, Appl. Phys. Lett., Vol. 69, pp. 2701, 1996.
[140] D. K. Schroder, ‘Semiconductor material and device characterization’ (Wiley, New York, 1998, 2nd edn.)
[141] K. M. Tracy, P. J. Hartlieb, S. Einfeldt, R. F. Davis, E. H. Hurt and R. J. Nemanich “Electrical and chemical characterization of the Schottky barrier formed between clean n-GaN(0001) surfaces and Pt, Au, and Ag”, J. Appl. Phys., Vol. 94, pp. 3939, 2003.
[142] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimuto, T. Kozaki, H. Umemoto, M. Sano and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate”, Appl. Phys. Lett., Vol. 72, pp. 211-213, 1998
[143] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, “InGaN/GaN multiquantum well blue and green light emitting diodes”, IEEE J. Sel. Top. Quan. Electron., Vol. 8, pp. 278-283, 2002.
[144] N. Biyikli, I. Kimukin, O. Aytur and E. Ozbay, “Solar-blind AlGaN-based p-i-n photodiodes with low dark current and high detectivity”, IEEE Photon. Technol. Lett., Vol. 16, pp. 1718-1720, 2004
[145] C. K. Wang, S. J. Chang, Y. K. Su, Y. Z. Chiou, S. C. Chen, C. S. Chang, T. K. Lin, H. L. Liu and J. J. Tang, "GaN MSM UV photodetectors with titanium tungsten transparent electrodes", IEEE Tran. Electron. Dev., Vol. 53, pp. 38-42, 2006.
[146] E. Monroy, E. Muňoz, F. J. Sánchez, F. Calley, E. Calleja, B. Beaumont, P. Gibart, J. A. Muňoz and F. Cussó, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications”, Semicond. Sci. Technol., Vol. 13, pp. 1042-1046, 1998
[147] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç¸ G. Smith, M. Estes, B. Goldenberg, W. Yang and S. Krishnankutty, “High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures”, Appl. Phys. Lett., Vol. 71, pp. 2154-2156, 1997
[148] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Low niose p-π-n GaN ultraviolet photodetectors”, Appl. Phys. Lett., Vol. 71, pp. 2334-2336, 1997.
[149] J. J. Horng, Y. K. Su, S. J. Chang, T. K. Ko, S. C. Shei, “Nitride-based Schottky barrier sensor module with high electrostatic discharge reliability”, IEEE Photon. Technol. Lett., Vol. 19, pp. 717-719, 2007.
[150] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, J. F. Chen, "GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts", IEEE Photon. Technol. Lett., Vol. 13, pp. 848-850, 2001.
[151] I. Kidoguchi, A. lshibashi, G. Sugahara and Y. Ban, “Air-bridged lateral epitaxial overgrowth of GaN thin films”, Appl. Phys. Lett., Vol. 76, pp. 3768-3770, 2000.
[152] T. Mukai, K. Takekawa and S. Nakamura, “InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates”, Jpn. J. Appl. Phys., Vol. 37, pp. L839-L841, 1998.
[153] A. M. Rokowski, P. Q. Miraglia, E. A. Prele, S. Einfeldt and R. F. Davis, “Surface instability and associated roughness during conventional and pendeo-epitaxial growth of GaN(0001) films via MOVPE”, J. Crystal Growth, Vol. 241, pp. 141-150, 2002
[154] K. Uchida, K. Nishida, M. Kondo and H. Munekata, “Epitaxial growth of GaN layers with double-buffer layers”, J. Crystal Growth, Vol. 189-190, pp. 270-274, 1998
[155] T. Kachi, K. Tomita, K. Itoh and H. Trando, “A new buffer layer for high quality GaN growth by metalorganic vapor phase epitaxy”, Appl. Phys. Lett., Vol. 72, pp. 704-706, 1998
[156] S. Sakai, T. Wang, Y. Morishima and Y. Naoi, “A new method of reducing dislocation density in GaN layer grown on sapphire substrate by MOVPE”, J. Crystal Growth, Vol. 221, pp. 334-337, 2000
[157] C. H. Kuo, S. J. Chang, Y. K. Su, C. K. Wang, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. M. Tsai and C. C. Lin, “Nitride-based blue LEDs with GaN/SiN double buffer layers”, Solid State Electron., Vol. 47, pp. 2019-2022, 2003.
[158] C. J. Tun, C. H. Kuo,Y. K. Fu, C. W. Kuo, C. J. Pan, and G. C. Chi, “Dislocation reduction in GaN with multiple MgxNy/GaN buffer layers by metal organic chemical vapor deposition”, Appl. Phys. Lett., Vol. 90, Art. no. 212109, 2007.
[159] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, “Highly reliable nitride based LEDs with SPS+ITO upper contacts”, IEEE J. Quan. Electron., Vol. 39, pp. 1439-1443, 2003
[160] S. K. Zhang, W. B. Wang, I. Shtau, F. Yun, L. He, H. Morkoc, X. Zhou, M. Tamargo and R. R. Alfano, “Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain”, Appl. Phys. Lett., Vol. 81, pp. 4862-4864, 2002.
[161] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors”, Appl. Phys. Lett., Vol. 79, pp. 1417-1419, 2001.
[162] B. H. Leung, W. K. Fong, C. F. Zhu and C. Surya, “Low-frequency noise in GaN thin films deposited by rf-plasma assisted molecular-beam epitaxy”, J. Appl. Phys., Vol. 91, pp. 3706-3710, 2002
[163] B. H. Leung, W. K. Fong and C. Surya, “Study of low-frequency excess noise in GaN materials”, Optical Materials, Vol. 23, pp. 203-206, 2003
[164] S. R. Morrison, “1/f noise from levels in a linear or planar array. III. Trapped carrier fluctuations at dislocations”, J. Appl. Phys., Vol. 72, pp. 4104-4112, 1992.
[165] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaar, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films”, Appl. Phys. Lett. Vol. 68, pp. 643-645, 1996.
[166] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors”, Appl. Phys. Lett., Vol. 79, No. 10, pp. 1417-1419, 2001. .
[167] S. K. Zhang, W. B. Wang, I. Shtau, F. Yun, L. He, H. Morkoc, X. Zhou, M. Tamargo and R. R. Alfano, “Back illuminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain”, Appl. Phys. Lett., Vol. 81, pp. 4862-4864, 2002.
[168] A. Garrido, E. Monroy, I. Izpura, and E. Munoz, “Photoconductive gain modelling of GaN photodetectors”, Semicond. Sci. Technol., Vol. 13, pp. 563-568, 1998.
[169] C. L. Yu, R. W. Chuang, S. J. Chang, P. C. Chang, K. H. Lee and J. C. Lin, "InGaN-GaN MQW metal-semiconductor-metal photodiodes with semi-insulating Mg-doped GaN cap layers", IEEE Photon. Technol. Lett., Vol. 19, pp. 846-848, 2007
[170] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, and J. A. Munoz, “AlxGa1-xN:Si Schottky barrier photodiodes with fast response and high detectivity” Electron. Lett., Vol. 36, No. 18, pp. 1581-1583, 2000.
[171] H. Morkoe, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies”, J. Appl. Phys, Vol. 76, pp. 1363-1398, 1994.
[172] L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars, and U. K. Mishra, “AlGaN/GaN heterojunction bipolar transistor”, IEEE Electron Dev. Lett., Vol. 20, pp. 277-279, 1999
[173] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and K. T. Ilson, “Metal semiconductor field effect transistor based on single crystal GaN”, Appl. Phys. Lett, Vol. 62, pp. 1786-1787, 1993
[174] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm, and M. S. Shur, “Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor”, Appl. Phys. Lett. Vol. 65, pp. 1121-1123, 1994.
[175] Y. F. Wu, B. P. Keller, P. Fini, S. Keller, T. J. Jenkins, L. T. Kehias, S. P. Denbaars, and U. K. Mishra, “High Al-content AlGaN/GaN MODFET’s for ultrahigh performance”, IEEE Electron Dev. Lett., Vol. 19, pp. 50-53, 1998
[176] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN/GaN multiquantum well blue and green light emitting diodes”, IEEE J. Sel. Top. Quan. Electron., Vol. 8, pp. 278-283, 2002.
[177] W. W. Chow, M. Hagerott Crawford, A. Girndt, and S. W. Koch, “Threshold conditions for an ultraviolet wavelength GaN quantum-well laser”, IEEE J. Sel. Top. Quan. Electron., Vol. 4, pp. 514-519, 1998.
[178] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimuto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate”, Appl. Phys. Lett., Vol. 72, pp. 211-213, 1998
[179] K. Tadatomo, H. Okagawa, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo and T. Taguchi, “High output power InGaN ultraviolet light emitting diodes fabricated on patterned substrates using metalorganic chemical vapor deposition”, Phys. Stat. Sol. (a), Vol. 188, No. 1, pp. 121-125, 2001.
[180] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen, and C. H. Liu, "Nitride-based LEDs fabricated on patterned sapphire substrates", Solid State Electron., Vol. 47, pp. 1539-1542, 2003.
[181] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, ”Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates”, IEEE Photon. Technol. Lett., Vol. 17, pp. 288, 2005.
[182] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin, and J. C. Ke, “Highly reliable nitride based LEDs with SPS+ITO upper contacts”, IEEE J. Quan. Electron., Vol. 39, pp. 1439-1443, 2003
[183] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaar, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films”, Appl. Phys. Lett. Vol. 68, pp. 643-645, 1996.
[184] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors”, Appl. Phys. Lett., Vol. 79, No. 10, pp. 1417-1419, 2001. .
[185] S. K. Zhang, W. B. Wang, I. Shtau, F. Yun, L. He, H. Morkoc, X. Zhou, M. Tamargo and R. R. Alfano, “Back illuminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain”, Appl. Phys. Lett., Vol. 81, pp. 4862-4864, 2002.
[186] A. Garrido, E. Monroy, I. Izpura, and E. Munoz, “Photoconductive gain modelling of GaN photodetectors”, Semicond. Sci. Technol., Vol. 13, pp. 563-568, 1998.
[187] C. L. Yu, R. W. Chuang, S. J. Chang, P. C. Chang, K. H. Lee and J. C. Lin, "InGaN-GaN MQW metal-semiconductor-metal photodiodes with semi-insulating Mg-doped GaN cap layers", IEEE Photon. Technol. Lett., Vol. 19, pp. 846-848, 2007
[188] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, and J. A. Munoz, “AlxGa1-xN:Si Schottky barrier photodiodes with fast response and high detectivity” Electron. Lett., Vol. 36, No. 18, pp. 1581-1583, 2000.
[189] P. Gibart, “Metal organic vapour phase epitaxy of GaN and lateral overgrowth”, Rep. Prog. Phys. 67, pp.667–715, 2004.
[190] W. Zhou, D. Ren, and P.D. Dapkus, “Transmission electron microscopy study of defect reduction in two-step lateral epitaxial overgrown nonplanar GaN substrate templates”, J. Crystal Growth Vol. 290, pp.11-17, 2006.
[191] K. Linthicum, T. Gehrke, D. Thomson, E. Carlson, P. Rajagopal, T. Smith, D. Batchelor, and R. Davis, “Pendeoepitaxy of gallium nitride thin films ”, Appl. Phys. Lett. Vol. 75, pp.196, 1999.
[192] Z. Liliental-Weber, M. Benamara, W. Swider, J. Washburn, J. Park, P.A. Grudowski, C. J. Eiting, and R. D. Dupuis, 1999 Fall Meeting of the Materials Research Society, in Boston, Massachusetts (1999).
[193] Y. H. Xie, U.S. Patent, No. US20030073272A1 (2003).
[194] Y. H. Xie, U.S. Patent, No. US20060290013A1 (2006).
[195] S. H. Li, C. A. Larsen, C. H. Chen and G. B. Stringfellow, “Radical reactions in pyrolysis of monoethylarsine and diethylasine”, J. Electronic Materials, Vol. 19, pp. 45, 1990.