簡易檢索 / 詳目顯示

研究生: 陳俊銘
CHEN, CHUN-MING
論文名稱: 單層石墨中調制磁場對藍道能階的影響
Effects of spatially modulated magnetic fields on the Landau levels in a monolayer graphene
指導教授: 林明發
Lin, Min-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 59
中文關鍵詞: 單層石墨調制磁場
外文關鍵詞: monolayer graphene, modulated magnetic fields
相關次數: 點閱:73下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文主要以緊束模型研究單層石墨在外加均勻和調制磁場共存的磁光學性質。單層石墨在均勻磁場之下存在著高簡併態的藍道能階。這些能階為完全平坦的能帶,態密度顯現出強烈的對稱峰結構,表現出零維系統特徵。藍道能階擁有特殊的空間對稱波函數,這些波函數為一維諧振子的解。均勻磁場下的單層石墨在光學吸收譜上呈現許多顯著的對稱吸收峰,且這些吸收峰擁有單一特定的光學選擇定則,這些定則已經被實驗所證實。而在調制磁場加入之後,藍道能階將以原本的能量為中心點分裂為成對的拋物線能帶。每條拋物線能帶具有一個新的邊界態,這些邊界態在態密度上表現出顯著的不對稱尖峰。此外,態密度也呈現出特別的雙峰結構,這是由於成對的邊界態所引起。這些不對稱峰為一維系統的特徵。換句話說,原本在均勻磁場下具有零維特徵的系統,其有效維度因調制磁場而提升。除了能帶特徵改變之外,波函數的對稱性也預期將會受到影響。由於光吸收譜的特性主要決定於波函數的特徵,所以我們也預測它會受到調制磁場強烈影響,包含吸收峰的頻率改變以及光學選擇律的消失等。這些理論上的預測可以經由光學實驗的量測得到驗證。

    This work studies the magneto-optical properties of monolayer graphene under the influence of both uniform and modulated magnetic fields using the tight-binding model. In the presence of uniform magnetic fields, graphene displays the Landau energy levels of high degeneracy. These purely plat bands result in the significant structure of symmetric peaks, exhibiting features of the zero-dimensional systems. These Landau levels correspond to the symmetric wave functions of one-dimensional oscillators. A great number of pronounced symmetric peaks exist in the optical absorption spectrum when applying uniform magnetic fields to graphene. According to our calculations, these peaks obey one specific selection rule, which has been confirmed by experiments. When modulated magnetic fields are exerted along with uniform ones, the Landau levels will split into pairs of parabolic bands centered around the original energy levels. Each parabolic band possesses a new band-edge state contributing to the prominent asymmetric peaks in the DOS. Moreover, the twin-peak structures in the DOS owes to the band-edge-state pairs. The asymmetric peaks characterize the one-dimensional system. In other words, the effective dimension of the system with zero-dimensional features will increase due to modulated fields. In addition to the energy bands, the symmetry of wave functions is also expected to be influenced. The optical absorption spectra are mainly decided by the features of wave functions and therefore are strongly affected by magnetic fields, including the frequencies of absorption peaks and the disappearance of optical selection rules. These predictions can be verified through optical measurements.

    第一章 導論......................1 第二章 理論及方法..............3 2.1單層石墨幾何結構及緊束模型......3 2.2外加均勻磁場下的漢米爾頓矩陣元素......10 2.3外加調制磁場下的漢米爾頓矩陣元素......12 2.4共存場下的漢米爾頓矩陣元素.........14 第三章 外加磁場所造成能帶和態密度的改變........16 3.1討論....................16 3.2 能帶和態密度隨均勻磁場的變化........18 3.3能帶和態密度隨調制磁場的變化........22 3.4藍道能階和態密度在調制磁場之下的變化....30 第四章 在共存場中調制磁場對波函數的影響........41 第五章 結論......................54 參考文獻.........................56

    1 Rocha CG, Pacheco M, Barticevic Z, Latge A. Phys. Rev. B 70,
    233402(2004)
    2 F. L. Shyu, Phys. Rev. B 72, 045424(2005)
    3 S. Iijima, “Helical microtubules od graphitic carbon”. Nature 354.
    56-58, (1991)
    4 R. Satio, G. Dresselhaus, and M. S. Dresselhaus, “Physical properties of carbon nanotubes”, Imperical College Press, London (1998)
    5 B. T. Kelly. Physics of graphite. Applied Science: London, Englewood, N. J. ,(1981)
    6 J. M. D Coey, M. Venkatesan, C. B. Fitzgerald, A. P. Douvalis, and I. S. Sanders, “Ferromagnetism of a graphite nodule from the Canyon Diablo meterorite”. Nature 420, 156-159 (2002)
    7 A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima, “Direct evidene for atomic defers in grapheme layers”. Nature 430, 870-873 (2004)
    8 E. T. Jensen, R. E. Palmer, W. Allison, and J. F. Annett,”Temperature-dependent plasmon frequency and linewidth in a semimetal”. Pjys. Rev. Lett. 66, 492-495 (1991)
    9 P. Laitenberger and R. E. Palmer, “Plasmon dispersion and damping at the surface of a semimetal”, Phys. Rev. Lett. 76, 1952-1955 (1996)
    10 H. Venghaus, Phys. Status Solidi B 81, 221 (1977)
    11 T. Pichler, M. Knupfer, M. S. Golden, J. Fink, A Rinzler, and R. E. Smalley, “Localixed and delocalized electronic states in single-wall carbon nanotubes”, Phys. Rev. Lett. 80, 4729-4732 (1998)
    12 P. R. Wallace, “The band theory of graphite”, Phys. Rev. 71, 622-634 (1947)
    13 J. W. McClure, “Diamagnetism of graphite”, Phys. Rev. 104, 666-671 (1956)
    14 J. C. Charlier, X. Gonze, nad J. P. Michenaud, “First-principles study of the electronic properties of graphite”, Phys. Rev. B 43,4579-4589 (1991)
    15 J. C. Charlier, J. P. Michenaud, “Tight-binding model for the electronic properties of simple hexagonal graphite”. Phys. Rev. B 44, 13237-13249(1991)
    16 J. C. Charlier, J. P. Michenaud and X. Gonze, “Tight-binding model for the electronic properties of simple hexagonal graphite”. Phys. Rev. B 46, 4531-4539 (1992)
    17 J. C. Charlier, J. P. Michenaud and Ph. Lambin, “Tight-binding density of electronic states of pregraphitic carbon”, Phys. Rev. B 46, 4540-4543(1992)
    18 C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, Y. K. Fang and M. F. Lin,”Magnetoelectronic properties of a graphite sheet”, Carbon 42, 2975-2980 (2004)
    19 F. Guinea, A H. Castro Neto and N. M. R. Peres, “Electronic states and laudau levels in grapheme stacks”, Phys. Rev. B 73, 245426 (2006)
    20 K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D Jiang, F. Schedin and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer grapheme”, Nature Physics 2, 177-180 (2006)
    21 Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, “Experimental observation of the quatum Hall effect and Berry’s phase in grapheme”, Nature Physics 2, 177-180 (2006)
    22 M. L. Sadowski, G. Martinez, M. Potemski, C. Berger and W. A. deHeer, “Laudau Level spectroscopy of ultrathin graphite layers”, Phys. Rev. Lett 97, 266405 (2006)
    23 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Nonoselov, S. Roth and A. K. Geim, “Raman spectrum of grapheme and grapheme layers”, Phys. Rev. Lett 97, 187401 (2006)
    24 R. Heyd, A. Charlier, E. Mcrace, “Uniaxial-stress effects on the electronic properties of carbon nanotubes:. Phys. Rev. B 55, 6820-6823 (1997)
    25 C. P. Chang, Y. H Chen, F. L. Shyu, R. B. Chen, and M. F. Lin, “Uniaxial-stress effect on electronic structure of nanographite ribbon”, Physica E 18, 509-522 (2003)
    26 C. P. Chang, B. R. Wu, R. B. Chen, and M. F. Lin, “Deformation effect on electronic and optical properties of nanographite ribbons”, J. Appl. Phys. 101, 063506 (2007)
    27 L. Yang, M. P. Anantram, J. Han, J. P. Lu, “Band-gap change of carbon nanotubes: Effect of smaill uniaxial and torsional strain”. Phys. Rev. B 60, 13874-13878 (1999)
    28 L. Yang and J. Han, “Electronic structure of deformed carbon nanotubes”. Phys. Rev. Lett. 85, 154-157 (2000)

    29 K. S. Novoselov, A. K. Geim, S. V. Morozov, Djiang, Y. Zhang, S. V. Dubonos, I. V. Grigoriva, and A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science 306, 666-669 (2004)
    30 J. S. Bunch, Y. Yaish, M. Brink, Bolotin and P. L. McEuen, “Coulumb oscillations and Hall effect in quasi-2D graphite quatum dots”, Nano lett. 5, 287-290 (2005)
    31 F. L. Shyu and M. F. Lin, “Plasmons and optical properties of semimetal graphite”, J. Phys. Soc. Jpn. 69, 3781-3784 (2000)
    32 J. H. Ho, C. P. Chamg and M. F. Lin, “Electronic excitations of the multilayered graphite”, Phys. Lett. A352, 446-450 (2006)
    33 W. A. Harrison, “Electronic Structure and the Properties of solids”, Dover, New York (1989)
    34 B. T. Kelly, “Physics of Graphite”, Applied Science, Landon (1981)

    下載圖示 校內:2011-08-17公開
    校外:立即公開
    QR CODE