簡易檢索 / 詳目顯示

研究生: 謝絜羽
Xie, Jie-Yu
論文名稱: 以剪力波速法評估台南地區土壤液化適用性之研究
Suitability Study of Soil Liquefaction in Tainan Area by shear Wave Velocity Method
指導教授: 倪勝火
Ni, Sheng-Huoo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系碩士在職專班
Department of Civil Engineering (on the job class)
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 120
中文關鍵詞: 美濃地震土壤液化剪力波速法震測圓錐貫入試驗標準貫入試驗液化潛能評估液化潛能指數
外文關鍵詞: Meinong earthquake, soil liquefaction, shear wave velocity method, Seismic Cone Penetration Test, Standard Penetration Test, liquefaction potential evaluation, liquefaction potential index
相關次數: 點閱:162下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究範圍為台南市北區、中西區、東區、永康區、安南區及新市區共6個行政區,使用台南市政府工務局「臺南市中級土壤液化潛勢地圖」之鑽探土層資料,並以土壤液化評估法所得之結果與歷年台南液化表徵資料相比較,藉以探討各評估方法在台南市區之適用性。
    以計畫中之12孔震測圓錐貫入試驗得到剪力波速資料,並參考該試驗鑽孔鄰近SPT鑽孔之土層資料,以Ohsaki與Iwasaki (1973)、Imai (1977)、Seed與Idriss (1981)、Lee (1990)、Ni等人 (1990)、Kayabali (1996)、Hasancebi與Ulusay (2006) 等7種N值與剪力波速之關係式,將N值轉換為剪力波速,並與SCPT鑽孔實際測得之剪力波速,以Andrus與Stokoe (2000) 剪力波速液化潛能評估方法計算土壤液化潛能,再使用Iwasaki (1984) 深度加權法評估液化損害程度。
    參考國震中心2006之大地震害潛勢資料建置及應用,依高、中、低液化敏感類別的鑽孔位置,分別畫出半徑為300公尺、400公尺和600公尺的圓形區域,將台南液化表徵點位以Arc GIS環域功能畫出各土壤液化高、中、低潛勢範圍,再與各種評估方法液化潛能指數圖使用圖層套疊加以分析,分析結果12個孔位中以SCPT試驗正確孔數達8孔,準確率為67% 為最佳,Seed與Idriss (1981) 及Ni等人 (1990) 正確孔數達6孔,準確率為50% 為次佳。

    Based on the shear wave velocity data obtained by the 12-hole Seismic Cone Penetration Test, and referring to the soil data of the nearby SPT borehole, the N values are converted into shears by the relationship between the seven SPT-N values and the shear wave velocity. Force wave speed. Next, Andrus and Stokoe (2000) were used to calculate soil liquefaction potential, and finally Iwasaki (1982) was used to assess the extent of liquefaction damage.
    The liquefaction characterization point of Tainan is used to draw high, medium and low potential ranges of soil liquefaction with Arc GIS. After the analysis results, the correct number of 8 holes was determined by SCPT in 12 holes, and the accuracy was 67%. The correct number of holes under the method of Seed and Idriss (1981) and Ni et al. (1990) is 6 holes with an accuracy of 50%, which is the second best.

    摘要 I Extended Abstract III 誌謝 IX 目錄 XI 圖目錄 XV 表目錄 XXI 第一章 緒論 1 1.1研究背景與目的 1 1.2研究方法 2 1.3論文內容 4 第二章 文獻回顧 5 2.1土壤液化概述和定義 5 2.2土壤液化產生之機制 7 2.3影響土壤液化之因素 8 2.3.1土壤特性影響之因素 8 2.3.2土層狀況影響之因素 12 2.3.3地震特性影響之因素 13 2.4土壤剪力波速之影響因素 14 2.5土壤液化潛能之評估方法 16 2.6土壤液化損壞程度評估 19 第三章 案例分析 23 3.1研究區域概述與基本資料 23 3.1.1研究範圍 23 3.1.2台南地形與地質概況 24 3.2美濃地震 25 3.3台南鑽探調查資料 29 3.3.1震測圓錐貫入試驗 29 3.3.2台南鑽孔位置 30 3.4 剪力波速應用評估方式 32 3.4.1剪力波速迴歸分析 32 3.4.2過去迴歸N值與剪力波速之關係式 33 3.5地理資料系統之應用 35 第四章 資料分析之結果討論 37 4.1各種剪力波速法迴歸關係式之比較結果 37 4.1.1剪力波速與N值之關係 37 4.1.2剪力波速與深度之關係 43 4.1.3剪力波速與安全係數之關係 49 4.2以剪力波速法評估液化潛能指數 56 4.3剪力波速法與SPT-N值法結果比較 62 4.4以誤差討論各種方法之差異 67 4.5以液化表徵判斷各方法準確率 70 4.5.1台南地區液化表徵資料 70 4.5.2各種評估方法之準確性 72 第五章 結論與建議 77 5.1結論 77 5.2建議 79 參考文獻 81 附錄A SPT-N值與剪力波速之轉換 89 附錄B液化分析結果 95

    日本道路協會(1990),道路橋示方書‧同解說,V耐震設計篇。
    內政部(2016),「0206震災中央災害應變中心總結報告」,第1-4頁。
    內政部營建署(2011),「建築物耐震設計規範及解說」,第2-1至2-47頁。
    內政部營建署(2011),「建築物基礎構造設計規範及解說」,第10-1至10-16頁。
    中央氣象局網站,「地震活動彙整」,2019年4月查詢,檢自https://www.cwb.gov.tw/V7/earthquake/rtd_eq.htm。
    台灣世曦工程顧問股份限公司以及財團法人成大研究發展基金會(2018),「臺南市中級土壤液化潛勢地圖第一期建置暨地質改善委託技術服務工作報告書」,臺南市政府工務局委託調查報告,未出版。
    吳偉特及楊騰芳(1987),「細料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59至74頁。
    何春蓀(1986),「臺灣地質概論-臺灣地質圖說明書」,經濟部中央地質調查所,共164 頁。
    周天穎(2018),「地理資訊系統理論與實務」,儒林出版社。
    柯明淳、葉錦勳、謝旻諺(2010),「大地震害潛勢資料建置及應用」,國家地震工程研究中心,報告編號:NCREE-06-025,共42頁。
    倪勝火、常正之、黃達勇、施旭峰、陳建民(1990),「高雄市區土壤動態特性之研究(一)」,國立成功大學土木工程研究所,行政院國家科學委員會防災科技研究報告第79-13號,共188頁。
    國家地震工程研究中心(2016),「0206美濃地震震源與強地動分析」,檢自https://www.ncree.org/Ncree.aspx?id=17。
    黃于庭(2018),「台南地區土壤液化評估方法適用性之研究」,碩士論文,國立成功大學土木工程系,台南市。
    經濟部中央地質調查所(2016),「20160206地震地質調查報告」,經濟部中央地質調查所出版,共103頁。
    張睦雄、許榕益(2001),「彰化地區土壤液化潛能評估與潛能圖繪製」, 國家地震工程研究中心研究報告。
    夏啟明(1992),「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,碩士論文,國立台灣大學土木工程研究所,台北市。
    Andrus, R.D., and Stokoe, K.H. (2000). “Liquefaction resistance of soils from shear-wave velocity,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, Issue 11, pp. 1015-1025.
    Chung, Kin, Y.C., and Wong, I.H. (1982). “Liquefaction potential of soils with plastic fines,” Soil Dynamics and Earthquake Engineering Conference, Southampton, pp. 887-897.
    Casagrande, A. (1936). “The determination of the pre-consolidation load and its practical significance,” Proceedings of the International Conferenceon Soil Mechanics and Foundation Engineering, pp. 60-64.
    Hasancebi, N., and Ulusay, R. (2006). “Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments,” Bulletin of Engineering Geology and the Environment, Vol. 66, No. 2, pp. 203-213.
    Hardin, B.O., and Richart, F.E. Jr. (1963). “Elastic wave velocities in granular soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. 1, pp. 33-66.
    Hazen, A. (1920). “Hydraulic-fill dams,” Transactions of the ASCE, pp. 1713-1745.
    Ishihara, K. (1993). “Liquefaction and flow failure during earthquakes,” Geotechnique, Vol. 43, Issue 3, pp. 351-451.
    Ishihara, K. (1985). “Stability of natural deposits during earthquakes,” Proc. 11th Int. Conf. on Soil Mech. and Found. Eng, San Francisco, Vol. 1, pp. 321-376.
    Iwasaki, T., Arakawa, T., and Tokida, K. (1984). “Simplified procedures for assessing soil liquefaction during earthquakes,” International Journal of Soil Dynamics and Earthquake Engineering, Vol. 3, No. 1, pp. 49-58.
    Ishibashi, I., Sherif, M.A., and Cheng, W.L. (1982). “The effects of soil parameters on pore-pressure-rise and liquefaction prediction,” Soils Found, Vol. 22, No. 1, pp. 39-48.
    Imai, T., and Tonouchi, K. (1982). “Correlation of N value with S-wave velocity and shear modulus,” Proceeding of the 2nd European Symposium on Penetration Testing, Amsterdam, pp. 57-72.
    Ishihara, K., and Okada, S. (1978). “Yielding of overconsolidated sand and liquefaction model under cyclic stresses,” Soils and Foundations, Vol.18, No.1, pp.57-72.
    Iwasaki, T., Tatsuoka, F., and Takagi, Y. (1978). “Shear moduli of sands under cyclic torsional shear loading,” Soils and Foundations, Vol. 18, No. 1, pp. 39-56.
    Imai, T. (1977). “P-wave and S-wave velocities of the ground in Japan,” Proc. 9th Intem. Conference on Soil Mechanics and Foundation Engineering, Vol. 2, pp. 257-260.
    Kayabali, K. (1996). “Soil liquefaction evaluation using shear wave velocity,” Engineering Geology, Vol. 44, No. 1, pp. 121-127.
    Lee, K.L., and Seed, H.B. (1967). “Drained strength characteristics of sands,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. 6, pp. 117-141.
    Liang, R., Bai, X., and Wang, J. (2000). “Effect of clay particle content on liquefaction of soil,” Proc. 12th World Conference on Earthquake Engineering, pp. 1560-1564.
    Lee, S.H. (1990). “Regression models of shear wave velocities in Taipei basin,” Journal of The Chinese Institute of Engineers, Vol. 13, No. 5, pp. 519-532.
    Lee, K.L., and Fitton, J.A. (1969). “Factor affecting the cyclic loading strength of soil,” Vibration Effects of Earthquake on Soils and Foundations, ASTM, pp. 71-95.
    Mori, K., Seed, H.B., and Chan, C.K. (1975). “Influence of simple disturbance on sand response to cyclic loading.” Report No. EERC 77-03,” U. C. Berkeley Earthquake Engineering Research Center.
    Mulilis, J.P., Chen, C.K., and Seed, H.B. (1975). “The effects of method of sample preparation on the cyclic stress-strain behavior of sands,” Report No. EERC 75-18, Earthquake Engineering Research Center, University of California.
    Ohsaki, Y., and Iwasaki, R. (1973). “On dynamic shear moduli and poisson's ratio of soil deposits,” Soils and Foundations, Vol. 13, No. 4, pp. 61-73.
    Pyke, R.M., Seed, H.B., and Chan, C.K. (1975). “Settlement of sands under multi-directional shaking,” Journal of the Geotechnical Engineering Division, Vol. 101, No. 4, pp. 370-398.
    Robertson, P.K., Campanella, R.G., Gillespie, D., and Rice, A. (1986). “Seismic CPT to measure in situ shear wave velocity,” Journal of Geotechnical Engineering, Vol. 112, No. 8, pp. 781-803.
    Seed, H.B., and Idriss, I.M. (1982). “Ground motions and soil liquefaction during earthquakes,” Earthquake Engineering Research Institute.
    Seed, H.B., and Idriss, I.M. (1981). “Evaluation of liquefaction potential sand deposits based on observation of performance in previous earthquakes,” ASCE National Convention, Missouri, pp. 81-544.
    Sherif, M.A., Tsuchiya, C., and Ishibashi, I. (1977). “Saturation effects on initial soil liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, Issue 8, pp. 914-917.
    Seed, H.B. (1976). “Evaluation of soil liquefaction effects on level ground during earthquakes,” State of the Art Report, Preprint of ASCE Annual Convention and Exposition on Liquefaction Problems in Geotechnical Engineering.
    Seed, H.B., and Peacock, W.H. (1971). “Test procedures for measuring soil liquefaction characteristics,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp. 1099-1119.
    Seed, H.B., and Idriss, I.M. (1971). “Simplified procedure for evaluating soil liquefaction potential,” Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 107, No. 9, pp. 1249-1274.
    Guo, T., and Prakash, S. (2000). “Liquefaction of silt-clay mixtures,” Proc. 12th World Conference on Earthquake Engineering, New Zealand.
    Tokimatsu, K., Yoshimi, Y., and Uchida, A. (1988). “Evaluation of undrained cyclic shear strength of soils with shear wave velocity,” Proceedings of Ninth World Conference on Earthquake Engineering, Vol. 3, pp. 207-212.
    Terzaghi, K. (1925), Erdbaumechanik Auf Bodenphysikalischen Grundlagen, Deuticke, Vienna.
    Yoshimi, Y., Tanaka, K., and Tokimatsu, K. (1989). “Liquefaction resistance of a partially saturated sand,” Soils and Foundations, Vol. 29, No. 3, pp. 157-162.

    無法下載圖示 校內:2021-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE