| 研究生: |
黃毓真 Huang, Yu-Chen |
|---|---|
| 論文名稱: |
運用機器學習及可解釋人工智慧於探討法人說明會內涵對臺灣上市公司股價影響之研究 A Study of Applying Machine Learning and Explainable Artificial Intelligence to Explore the Impact of Earnings Calls on Stock Prices in Taiwan |
| 指導教授: |
徐立群
Shu, Lih-Chyun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融研究所 Graduate Institute of Finance |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 法人說明會 、資訊揭露 、機器學習 、可解釋性人工智慧 、異常報酬 |
| 外文關鍵詞: | Earnings Calls, Information Disclosure, Machine Learning, Explainable AI, Abnormal Returns |
| 相關次數: | 點閱:63 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在資訊更迭快速的現代,法人說明會漸漸成為臺灣上市櫃公司重要的自願性揭露管道,對於投資人及分析師而言更是取得公司資訊的重要管道,政府亦規定自2018年起上市公司每年須召開至少一場法人說明會。由此可見,法人說明會已然成為企業與投資人及分析師進行即時交流的重要平台,不僅提供財務報表以外的深入資訊,更讓投資人了解企業現況及未來發展。
目前國外研究也指出法人說明會具重要資訊內涵,然而國內關於法人說明會本身資訊內涵的討論及研究較少,故本研究以臺灣六大產業之上市公司為研究對象,聚焦於法人說明會中影音揭露及問答環節資訊內涵,透過觀察2020年至2023年間法人說明會影音資料,並建置多種機器學習模型進行預測以找出最適股價漲跌預測模型,結合可解釋性人工智慧(XAI)工具來揭示各特徵在模型中的影響力,從而分析除了強制性揭露之財務報表資訊外,法人說明會內容對於股價漲跌之影響,經分析得到以下結論:
一、法人說明會本身辦理形式及影音揭露方式對股價漲跌的影響有限。
二、法人說明會中問答環節資訊可有效增強模型準確度,且提升股價漲跌預測力,其中詢問熱度及公司提供問答環節時長均為影響股價漲跌的主要特徵。
三、結合法人說明會資訊可比單憑財務報表數據更準確預測股價漲跌。
本研究貢獻在於提出針對國內法人說明會內涵資訊等即時性特徵的股價預測模型,透過法人說明會資訊揭露增強投資判斷的可能性,進一步支持我國法人說明會與國外研究表示法人說明會所透露的資訊對股價有相關性且使預測準確率有所提升之結果一致,即法人說明會為具有資訊內涵的資訊揭露管道。
In recent years, earning calls have gradually become an important voluntary disclosure channel for companies. For investors and analysts, these conferences are also served as a vital method to obtain company information. Since 2018, Taiwan listed companies must hold at least one earning call annually. As public attention is focus on the impact of Taiwan earning calls’ mechanism, external information and background, the internal information of earning calls such as “presentation section” and “question and answer section” may be informative as well.
In order to find out whether earning calls of Taiwan listed companies have information content, we use video disclosures and Q&A sessions as database to analyze the impact on stock price. This study also constructs multiple machine learning models to find the best predict model and operate XAI to explain the influence of each feature.
Through machine learning model, it reveals that
1.The impact of earning calls on stock price volatility is limited by the format of earning calls and the method of disclosure of video.
2.The information of Q&A sessions in earning calls can effectively enhance the accuracy of the model and improve the prediction of stock price fluctuation.
3.Combined with the internal information of earning calls, it can be more predictable than based on only financial statement data.
一、英文文獻
1.Beaver, W. H., 1968. The Information Content of Annual Earnings Announcements. Journal of Accounting Research, 67-92.
2.Brown, S., Hillegeist, S. A., & Lo, K., 2009. The Effect of Earnings Surprises on Information Asymmetry. Journal of Accounting and Economics, 47(3), 208-225.
3.Bushee, B. J., Matsumoto, D. A., & Miller, G. S., 2003. Open Versus Closed Conference Calls: The Determinants and Effects of Broadening Access to Disclosure. Journal of Accounting and Economics, 34(1-3), 149-180.
4.Cheng, L.-C., Huang, Y.-H., & Wu, M.-E., 2018. Applied Attention-Based LSTM Neural Networks in Stock Prediction. 2018 IEEE International Conference on Big Data (Big Data).
5.Dell'Acqua, A., Perrini, F., & Caselli, S., 2010. Conference Calls and Stock Price Volatility in the Post-Reg FD Era. European Financial Management, 16(2), 256-270.
6.Deng, S., Zhang, N., Zhang, W., Chen, J., Pan, J. Z., & Chen, H., 2019. Knowledge-Driven Stock Trend Prediction and Explanation via Temporal Convolutional Network. Companion Proceedings of the 2019 World Wide Web Conference.
7.Diamond, D. W., & Verrecchia, R. E., 1991. Disclosure, Liquidity, and the Cost of Capital. The Journal of Finance, 46(4), 1325-1359.
8.Easley, D., & O'hara, M., 2004. Information and the Cost of Capital. The Journal of Finance, 59(4), 1553-1583.
9.Francis, J., Hanna, J. D., & Philbrick, D. R., 1997. Management Communications with Securities Analysts. Journal of Accounting and Economics, 24(3), 363-394.
10.Francis, J. R., Khurana, I. K., & Pereira, R., 2005. Disclosure Incentives and Effects on Cost of Capital around the World. The Accounting Review, 80(4), 1125-1162.
11.Frankel, R., Johnson, M., & Skinner, D. J., 1999. An Empirical Examination of Conference Calls as a Voluntary Disclosure Medium. Journal of Accounting Research, 37(1), 133-150.
12.Healy, P. M., & Palepu, K. G., 2001. Information Asymmetry, Corporate Disclosure, and the Capital Markets: A Review of the Empirical Disclosure Literature. Journal of Accounting and Economics, 31(1-3), 405-440.
13.Hollander, S., Pronk, M., & Roelofsen, E., 2010. Does Silence Speak? An Empirical Analysis of Disclosure Choices During Conference Calls. Journal of Accounting Research, 48(3), 531-563.
14.Kent, R., Long, W., Yang, Y., & Yao, T., 2023. Controlling Shareholders’ Equity Pledges and Properties of Analysts’ Earnings Forecasts. Available at SSRN 4342012.
15.Kimbrough, M. D., & Louis, H., 2011. Voluntary Disclosure to Influence Investor Reactions to Merger Announcements: An Examination of Conference Calls. The Accounting Review, 86(2), 637-667.
16.Ma, Z., Bang, G., Wang, C., & Liu, X., 2020. Towards Earnings Call and Stock Price Movement. arXiv preprint arXiv:2009.01317.
17.Matsumoto, D., Pronk, M., & Roelofsen, E., 2011. What Makes Conference Calls Useful? The Information Content of Managers' Presentations and Analysts' Discussion Sessions. The Accounting Review, 86(4), 1383-1414.
18.Mayew, W. J., 2008. Evidence of Management Discrimination Among Analysts during Earnings Conference Calls. Journal of Accounting Research, 46(3), 627-659.
19.Medya, S., Rasoolinejad, M., Yang, Y., & Uzzi, B., 2022. An Exploratory Study of Stock Price Movements from Earnings Calls. Companion Proceedings of the Web Conference 2022.
20.Ou, J. A., & Penman, S. H., 1989. Financial Statement Analysis and the Prediction of Stock Returns. Journal of Accounting and Economics, 11(4), 295-329.
21.Patel, J., Shah, S., Thakkar, P., & Kotecha, K., 2015. Predicting Stock Market Index Using Fusion of Machine Learning Techniques. Expert Systems with Applications, 42(4), 2162-2172.
22.Ragozzino, R., & Reuer, J. J., 2024. Implications of Mergers and Acquisitions for Information Disclosures in Earnings Calls. Long Range Planning, 57(1), 102393.
23.Ray Ball, P. B., 1968. An Empirical Evaluation of Accounting. Journal of Accounting Research.
24.Siddiqui, H. U. R., de Abajo, B. S., de la Torre Díez, I., Rustam, F., Raza, A., Atta, S., & Ashraf, I., 2023. Predicting Bankruptcy of Firms Using Earnings Call Data and Transfer Learning. PeerJ Computer Science, 9, e1134.
25.Sunder, S. V., 2003. Investor Access to Conference Call Disclosures: Impact of Regulation Fair Disclosure on Information Asymmetry. Available at SSRN.
26.Tasker, S. C., 1998. Bridging the Information Gap: Quarterly Conference Calls as a Medium for Voluntary Disclosure. Review of Accounting Studies, 3, 137-167.
27.Theil, C. K., Broscheit, S., & Stuckenschmidt, H., 2019. PRoFET: Predicting the Risk of Firms from Event Transcripts. IJCAI,
28.Wang, C.-J., Tsai, M.-F., Liu, T., & Chang, C.-T., 2013. Financial Sentiment Analysis for Risk Prediction. Proceedings of the Sixth International Joint Conference on Natural Language Processing.
29.Xu, Y., & Cohen, S. B., 2018. Stock Movement Prediction from Tweets and Historical Prices. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
二、中文文獻
1.劉順仁、王俊凱、李季澄與黃宇翔,2021。機器學習與會計科目判斷-台灣半導體公司使用人工智慧提升行政效率個案對會計教育之啟示。中華會計學刊,17(2),245-268。
2.林欣伽,2023。線上法人說明會與資訊環境。國立臺北大學企業管理學系研究所論文。
3.林毓亭,2010。管理階層召開法人說明會因素之探究。國立臺灣大學會計學研究所論文。
4.金成隆、林美鳳與梁嘉紋,2008。公司治理結構和法人說明會之關連性研究。 管理學報,25(2),221-243。
5.金成隆、紀信義與林裕凱,2005。強制性財務預測與法人說明會關聯性之研究。管理學報,22(5),629-651。
6.粘凱婷、金成隆、周濟群與汪戊安,2016。法人說明會資訊在供應鏈中之垂直資訊移轉效果:以台灣之半導體產業供應鏈為例。臺大管理論叢,26(3),1-34。
7.黃劭彥、張森河、王登仕與李怡葶,2014。法人說明會內容對未來盈餘反應係數的影響。會計審計論叢,4(2),29-58。
8.蔡幸儒,2002。法人說明會資訊內涵及影響管理當局召開行為動機之研究。國立台北大學會計學研究所碩士論文。
9.蕭惟中,2019。法人說明會資訊揭露對股票之影響。國立臺灣海洋大學航運管理學系研究所論文。
10.賴柏錚,2003。不同型態法人說明會資訊內涵之差異及法人說明會之資訊公平性研究。國立臺北大學會計學系研究所論文。
11.鍾宇軒、黃劭彥與戚務君,2013。法人說明會對企業資訊不對稱的影響。管理學報,30(4),295-322。