簡易檢索 / 詳目顯示

研究生: 鄒永慶
Chou, Yung-Ching
論文名稱: 高 Alpha 相含量堇青石粉末的生成機制與特性
The formation mechanism and characteristics of cordierite powders with high alpha phase contents
指導教授: 黃啟原
Huang, Ci-Yuan
共同指導教授: 顏富士
Yen, Fu-Su
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 99
中文關鍵詞: 粒徑縮減低溫生成α-堇青石生成機制
外文關鍵詞: Reduce particle size, α-Cordierite be produced at low temperature, Formation mechanism
相關次數: 點閱:68下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討於低溫時直接生成高α-堇青石(α-cordierite,又稱indialite)含量之堇青石粉末的可能性及其生成機制與特性分析。合成該粉末所使用的原料為高嶺土(kaolinite)、滑石(talc)以及α-氧化鋁(alumina)粉末,並以固態反應法合成。
    在合成堇青石時因使用三種原料粒徑大小不一,導致混合時顆粒不易均勻排列,使系統內有未反應及反應不完全者,難達到顆顆均有反應發生。另外,一般固態反應法也難在低溫時即生成高溫相的α-堇青石,常需提高溫度及拉長持溫時間,才能得到高純度的α-堇青石。所以怎麼改善固態反應法以達到整體能同步反應並在低溫就生成多量的α-堇青石,縮短反應時間與降低生成溫度,為本研究重心。
    藉由縮減原料粒徑讓堇青石的合成溫度降低是採用的方法,但如此作法是否可提高α-堇青石之生成量,則少見研究。本研究希望能藉由縮減高嶺土與滑石粉原料粒徑至次微米級,觀察於低溫生成高α-堇青石含量之可能性並了解其生成機制,並且能確認掌控高α-堇青石含量生成機制的中間相為何,來建立出整個高α-堇青石含量的生成路徑過程。
    本研究α-堇青石的生成路徑有三。
    (1) 頑火輝石、α-氧化鋁與非晶質氧化矽反應生成(低溫反應)。
    (2) 先獲得β-堇青石再相變得到α-堇青石。
    得到β-堇青石的途徑為富鋁紅柱石與頑火輝石反應生成。
    (3) 鎂鋁尖晶石與非晶質氧化矽反應生成。
    由本研究得知,將能提供鋁來源的兩個原料高嶺土與α-氧化鋁的粒徑縮減後,能讓富鋁紅柱石迅速反應生成,並有機會讓α-氧化鋁提早參與反應生成α-堇青石,使α-堇青石在低溫時就能獲得。所以藉著縮減原料粒徑(特別是高嶺土與α-氧化鋁)的手段,是有助於在低溫時就可得到高α-堇青石含量之堇青石粉末,並進行多項分析。

    The possibility of its formation mechanism and characterization of cordierite powder directly generate a high content of α-cordierite(indialite) at low temperature was examined. Kaolinite, talc, α-alumina as the raw materials we used to synthesis cordierite by solid state reaction method.

    In this study, the result between shortening particle size can reduce the reaction temperature. However, studies are rare whether it can be increased to amount generate of α-cordierite. Through the reduction of particle size kaolinite and talc to submicron level, observe the possibility of generating a high content of α-cordierite at low temperature and to understand its formation mechanism, generation path and the whole process of the establishment of a high content α-cordierite.

    When kaolinite and alumina two can provide the aluminum sources materials particle size is reducing, since they leads to mullite rapid reaction, and the alumina has opportunity to advance participate in reaction of cordierite, that allows to lower the temperature of the beginning of the α-cordierite reaction. It’s contribute can be obtained a high content α-cordierite powder at low temperature by reducing the particle size of the raw material (especially kaolin and alumina).

    摘要 I The formation mechanism and characteristics of cordierite powders with high alpha phase contents III 誌謝 VII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究目的 2 第二章 理論基礎 3 2.1 堇青石介紹 3 2.1.1 堇青石之結構 3 2.1.2 α-堇青石之熱膨脹特性 4 2.2 影響堇青石陶瓷體熱膨脹係數之因素 12 2.2.1 α-與β-堇青石之影響 12 2.2.2 過渡相殘留 13 2.2.3 原料粒徑與外型 13 2.2.4 晶粒排列 14 2.3 合成堇青石之方法與其反應機制 17 2.3.1 固態反應法(Solid State Method) 17 2.3.2 溶膠凝膠法(Sol-Gel Method) 19 2.3.3 玻璃結晶法(Glass crystallization method) 20 2.4 高α-堇青石含量之堇青石粉末之生成方式與一般生成溫度 21 第三章 研究方法及步驟 22 3.1 實驗原料 22 3.2 實驗設計與步驟 24 3.2.1 原料粉末之製備 24 3.2.2 樣品製備 27 3.2.3 粉末熱處理 27 3.3 特性分析 28 3.3.1 粒徑分佈 28 3.3.2 粉末成分/成分組成 28 3.3.3 熱差分析 28 3.3.4 粉末結晶相分析 29 3.3.5 結晶相定量分析 29 3.3.6 微結構分析 30 3.3.7 熱膨脹係數測定 30 第四章 結果與討論 35 4.1 數據整理 35 4.1.1 熱差及煆燒後結晶相分析說明 35 4.1.2 α-堇青石生成量採用之X-ray 繞射峰 37 4.2 低溫生成α-堇青石可能性分析 38 4.2.1 α-堇青石的來源與其生成溫度 38 4.2.2 α-堇青石低溫合成條件 39 4.3 造成高α-堇青石含量之堇青石粉末生成條件 49 4.3.1 高嶺土與α-氧化鋁粒徑縮減 49 4.3.2 KS系統之堇青石生成機制 50 4.4 顯微結構觀察 56 4.4.1 K5T7於1075oC至1100oC煆燒處理之TEM分析 56 4.4.2 K5T7於1200oC至1250oC熱處理之TEM分析 62 4.5 熱膨脹係數之比較 66 第五章 結論 68 參考文獻 70 附錄A K5T7及K5T20在1200oC與1250oC之XRD積分面積 74 附錄B KS系統兩樣品各相生成溫度區間以及路徑圖 82

    [1] E. M. Levin, C. R. Robbins, and H. F. McMurdie, Phase Diagrams for Ceramists. American Ceramic Society: Columbus, Ohio, (1964).
    [2] M. D. Glendenning and W. E. Lee, "Microstructural Development on Crystallizing Hot-Pressed Pellets of Cordierite Melt-Derived Glass Containing B2O3 and P2O5," Journal of the American Ceramic Society, 79, 705-713, (1996).
    [3] J. M. Benito, X. Turrillas, G. J. Cuello, A. H. De Aza, S. De Aza, and M. A. Rodríguez, " Cordierite Synthesis. A Time-Resolved Neutron Fiffraction Study. " Journal of the European Ceramic Society, 32, 371-379, (2012) .
    [4] E. P. Meagher and G. V. Gibbs, " The Polymorphism of Cordierite II: The Crystal Structure Indialite," Canadian Mineralogist, 15, 43-49, (1977).
    [5] T. Ogiwara, Y. Noda, K. Shoji, and O. Kimura, “Solid State Synthesis and its Characterization of High Density Cordierite Ceramics using Fine Oxide Powders,” Journal of the Ceramic Society of Japan, 118, 246–249, (2010).
    [6] R. Goren, H. Gocmez, and C. Ozgur, “Synthesis of Cordierite Powder from Talc, Diatomite and Alumina,” Ceramics International, 32, 407–409, (2006).
    [7] C. Ghitulica, E. Andronescu, Nicola, O. A. Dicea, and M. Birsan, "Preparation and Characterization of Cordierite Powders " Journal of the European Ceramic Society, 27, 711-713, (2007).
    [8] M. F. Hochella and G. E. Brown, "Structural Mechanisms of Anomalous Thermal-Expansion of Cordierite-Beryl Ans Other Framework Silicates," Journal of the America Ceramic Socciety, 69, 13-18, (1986).
    [9] A. Putnis, An Introduction to Mineral Sciences, Cambridge University Press, (1992).
    [10] P. Predecki, J. Haas, J. Faber, and R. L. Hitterman, "Structural Aspects of the Lattice Thermal-Expansion of Hexagonal Cordierite," Journal of the America Ceramic Socciety, 70, 175-82, (1987).
    [11] Lachman, I. M. Bagley, R. D. Lewis and M. Ronald, "Thermal Expansion of Extruded Cordierite Ceramics, " American Ceramic Society bulletin, 60, 202–205, (1981).
    [12] H. Ikawa, T. Oyagira, O. Imai, M. Suzuki, K. Urabe, and S. Udagawa, "Crystal Structures and Mechanism of Thermal Expansion of High Cordierite and Its Solid Solutions " Journal of the American Ceramic Society, 69, 492-498, (1986).
    [13] Y. Hirose, H. Doi, and O. Kamigaito, "Thermal Expansion of Hot-Pressed Cordierite Glass Ceramics," Journal of Materials Science Letters, 3, 153–155, (1984).
    [14] J. Banjuraizah, H. Mohamad, and Z. A. Ahmad, "Effect of Excess MgO Mole Ratio in a Stoichiometric Cordierite (2MgO·2Al2O3·5SiO2) Composition on the Phase Transformation and Crystallization Behavior of Magnesium Aluminum Silicate Phases," International Journal of Applied Ceramic Technology, 8, 637–645, (2011).
    [15] 汪建民,栗愛綱編,精密陶瓷特性及檢測分析,工業技術研究院工業材料研究所,中華民國77年。
    [16] Matsuhisa et al., "Cordierite ceramic," US 4280845, (1981).
    [17] Hamanaka et al. "Method of Producing a Cordierite Honeycombs Structural Body, " US5030398, (1991).
    [18] B. H. Mussler and M. W. Shafer, "Preparation and Properties of Mullite-Cordierite Composites," American Ceramic Society bulletin, 63, 705–714, 1984.
    [19] E. Yalamaç and S. Akkurt, S. " Additive and Intensive Frinding Effects on the Synthesis of Cordierite, " Ceramics international, 32, 825-832 , (2006).
    [20] Z. M. Shi, K. M. Liang and S. R. Gu, "Effects of CeO2 on Phase Transformation Towards Cordierite in MgO–Al2O3–SiO2 System," Materials Letters, 51, 68-72, (2001).
    [21] J. R. Gonzalez-Velasco, M. A. Gutierrez-Ortiz, R. Ferret, A. Aranzabal, and J. A. Botas, "Synthesis of Cordierite Monolithic Honeycomb by Solid State Reaction of Precursor Oxides," Journal of materials Science, 34, (1999).
    [22] L. Trumbulović, Z. Aćimović-Pavlović, S. Panić, and L. D. Andrić, "Synthesis and Characterization of Cordierite from Kaolin and Talc for Casting Application," FME Transactions, 31, 43-47, (2003).
    [23] M. T. Malachevsky, J. E. Fiscina, and D. A. Esparza, "Preparation of Synthetic Cordierite by Solid-State Reaction Via Bismuth Oxide Flux," Journal of American Ceramic Society, 84, 1575-77, (2001).
    [24] A. Yamuna, R. Johnson, Y. R. Mahajan, and M. Lalithambika, "Kaolin-Based Cordierite for Pollution Control," Journal of the European Ceramic Society, 24, 65-73, (2004).
    [25] R. Johnson, I. Ganesh, B. P. Saha, G. N. Rao, and Y. R. Mahajan, "Solid State Reactions of Cordierite Precursor Oxides and Effect of CaO Doping on The Thermal Expansion Behaviour of Cordierite Honeycomb Structures," Journal of materials science, 38, 2953-2961, (2003).
    [26] A. M. Kazakos, S. Komarneni, and R. Roy, "Sol-gel processing of cordierite: Effect of seeding and optimization of heat treatment, " Journal of Materials Research, 5, 1095-1103, (1990).
    [27] B. Tang, Y. Fang, S. Zhang, H. Ning and C. Jing, "Preparation and Characterization of Cordierite Powders by Water-Based Sol-Gel method, " Indian Journal of Engineering & Materials Sciences, 18(3), 221-226. (2011).
    [28] X. Guo, K. Nakanishi, K. Kanamori, K. Zhu and H. Yang, "Preparation of Macroporous Cordierite monoliths via The Sol–Gel Process Accompanied by Phase Separation," Journal of the European Ceramic Society, 34, 817-823, (2014).
    [29] A. M. Menchi and A. N. Scian, "Mechanism of Cordierite Formation Obtained by The Sol–Gel Technique," Materials Letters, 59, 2664-2667, (2005).
    [30] N. J. Azín, M. A. Camerucci and A. L. Cavalieri, "Crystallisation of Non-Stoichiometric Cordierite Glasses," Ceramics international, 31, 189-195, (2005).
    [31] H. Xiaojun, et al. "Preparation and Properties of Transparent Cordierite-Based Glass-Ceramics with High Crystallinity," Ceramics International, (2015).
    [32] J. Banjuraizah, H. Mohamad, and Z. A. Ahmad, "Crystal Structure of Single Phase and Low Sintering Temperature of Alpha-Cordierite Synthesized from Talc and Kaolin," Journal of Alloys and Compounds, 482, 429-36, (2009).
    [33] M. Wesolowski, "Thermal-Decomposition of Talc - A Review," Thermochimica Acta, 78[1-3] 395-421 (1984).
    [34] 顏富士, 陳政毓, 游佩青, "以奈米氧化鋁粉末合成堇青石," 陶業, 32卷[1期], 1-7頁(2013).
    [35] 李曼妮,在合成堇青石過程晶種之粒徑及添加量對出現過渡相的關係研究,國立成功大學資源工程學系碩士論文,中華民國104年。

    下載圖示 校內:2018-12-24公開
    校外:2018-12-24公開
    QR CODE