研究生: |
李鎮宇 Li, Chen-Yu |
---|---|
論文名稱: |
基於功能特徵方法評估渠道化工程對魚類群落的影響 Using a Trait-Based Approach to Assess the Responses of Fish Assemblages in the Channelized River |
指導教授: |
孫建平
Suen, Jian-Ping |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 渠道化工程 、生物多樣性 、功能特徵 、功能多樣性 |
外文關鍵詞: | Channelization, Biodiversity, Functional traits, Functional diversity |
相關次數: | 點閱:102 下載:24 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著人類活動越來越頻繁,各種工程逐漸興建,許多生態系統已經受到了人為擾動的影響,而其中水生生態系統更是受到人為擾動最嚴重的生態系統之一,為了增加便利性以及災害的預防,人類在河道中大量進行護岸、堤防等渠道化工程,但這些人為工程在為人類帶來方便的同時,也嚴重的影響了水生生態系統。
本篇研究中,我們首先想了解渠道化工程對當地河道產生哪些改變,比較工程擾動較大的上游區域和工程擾動較小的下游區域間環境變量的差異,除此之外,我們也針對魚類群落的結構進行探討,試著去找出渠道化工程對魚類群落帶來的影響,除了比較體長與體重的差別,以及利用常用來檢測生態系統的各類生物多樣性指標外,在本篇研究中還加入了較新穎的研究方法,即利用功能特徵去檢測物種的功能多樣性,比較群落間資源利用的情形以及效率,最後試著找出受到渠道化工程影響的功能結構。
在主成份分析的結果中,我們發現了上游區域和下游區域間在河道形態的變化程度上有顯著的差異,證明了該區域渠道化工程對河道環境的影響;受到渠道化工程的影響,魚類形態在不同區域間也存在相當大的差異,但是從生物多樣性指數的結果來看,似乎不能很好的反映出魚類群落的變化;另一方面在功能多樣性的結果中,不只可以很好的從更廣泛的角度去檢視渠道化工程所帶來的影響,更可以進一步的利用了功能特徵,去探討因其而改變的功能結構的變化,這不僅說明了這種基於功能特徵的分析方法對於人為擾動之反應程度較好,也從不同的角度去補足了生物多樣性未解釋到的訊息。綜合以上原因,對於未來的生態評估而言,這種分析方法是非常適用且合宜的。
As there are more and more human activities along the rivers, flood-protecting structures are built to prevent or reduce the loss of human lives and belongings. In order to increase convenience and prevention of disasters, human beings have carried out a large number of channelized engineering such as revetment and dike. However, although these engineered structures have brought convenience to human beings, they seriously affected aquatic ecosystems. Therefore, we would like to investigate the changes of fish community in the river due to the channelization.
For this purpose, some environmental variables were measured and compared from the protected upstream and unprotected downstream, respectively. Furthermore, fishes of different spices were collected to measure the length and weight to investigate the impact of the channelization on fish communities. In addition to comparing differences in the length and weight of fishes, biodiversity index was used as well to detect fish communities. Functional traits were used to detect the functional diversity of species, compare the situation and efficiency of resource utilization among communities, and finally try to search the functional structure affected by channelization. The results of Principal Component Analysis (PCA) showed that there was a significant difference in the degree of channel morphological change between the upstream and the downstream regions, which showed the impact of the channelization on the environment. Due to the influence of channelization, there were considerable differences in fish morphology between different regions . However, the results of the biodiversity index did not reflect the changes in fish communities well. On the other hand, the results of functional diversity showed high correlation to the impact of channelization, and was suitable for further utilization in the functional traits to explore the functional structure changed. It shows that this kind of trait-based approach had a good response to human disturbance, but complemented the unexplained information of biodiversity well. For these reasons, this approach could be suitable for ecological assessment.
Bain, M. B., Finn, J. T., & Booke, H. E. (1985). A quantitative method for sampling riverine microhabitats by electrofishing. North American Journal of Fisheries Management, 5(3B), 489-493.
Bernhardt, E. S., & Palmer, M. A. (2007). Restoring streams in an urbanizing world. Freshwater Biology, 52(4), 738-751. doi:10.1111/j.1365-2427.2006.01718.x
Boyero, L. (2003). Multiscale patterns of spatial variation in stream macroinvertebrate communities. Ecological Research, 18(4), 365-379.
Brederveld, R. J., Jahnig, S. C., Lorenz, A. W., Brunzel, S., & Soons, M. B. (2011). Dispersal as a limiting factor in the colonization of restored mountain streams by plants and macroinvertebrates. Journal of Applied Ecology, 48(5), 1241-1250. doi:10.1111/j.1365-2664.2011.02026.x
Cornwell, W. K., Schwilk, D. W., & Ackerly, D. D. (2006). A trait-based test for habitat filtering: Convex hull volume. Ecology, 87(6), 1465-1471. doi:10.1890/0012-9658(2006)87[1465:Attfhf]2.0.Co;2
Crail, T. D., Gottgens, J. F., & Krause, A. E. (2011). Fish community response to evolving channel complexity in an agricultural headwater system. Journal of Soil and Water Conservation, 66(5), 295-302. doi:10.2489/jswc.66.5.295
Engman, A. C., & Ramirez, A. (2012). Fish assemblage structure in urban streams of Puerto Rico: the importance of reach- and catchment-scale abiotic factors. Hydrobiologia, 693(1), 141-155. doi:10.1007/s10750-012-1100-6
Frainer, A., & McKie, B. G. (2015). Shifts in the Diversity and Composition of Consumer Traits Constrain the Effects of Land Use on Stream Ecosystem Functioning. In S. Pawar, G. Woodward, & A. I. Dell (Eds.), Advances in Ecological Research, Vol 52: Trait-Based Ecology - from Structure to Function (Vol. 52, pp. 169-200). San Diego: Elsevier Academic Press Inc.
Frainer, A., Polvi, L. E., Jansson, R., & McKie, B. G. (2018). Enhanced ecosystem functioning following stream restoration: the roles of habitat heterogeneity and invertebrate species traits. Journal of Applied Ecology, 55(1), 377-385.
Gonzalez-Trujillo, J. (2016). Trait-based responses of caddisfly assemblages to the partial channelization of a High-Andean stream. Hydrobiologia, 766(1), 381-392. doi:10.1007/s10750-015-2474-z
Gostner, W., Alp, M., Schleiss, A. J., & Robinson, C. T. (2013). The hydro-morphological index of diversity: a tool for describing habitat heterogeneity in river engineering projects. Hydrobiologia, 712(1), 43-60.
Laureto, L. M. O., Cianciaruso, M. V., & Samia, D. S. M. (2015). Functional diversity: an overview of its history and applicability. Natureza & Conservação, 13(2), 112-116.
Lefcheck, J. S., Bastazini, V. A., & Griffin, J. N. (2015). Choosing and using multiple traits in functional diversity research. Environmental Conservation, 42(2), 104-107.
Maire, E., Grenouillet, G., Brosse, S., & Villéger, S. (2015). How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Global Ecology and Biogeography, 24(6), 728-740.
Mason, N. W., Mouillot, D., Lee, W. G., & Wilson, J. B. (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111(1), 112-118.
Mouchet, M., Guilhaumon, F., Villéger, S., Mason, N. W., Tomasini, J. A., & Mouillot, D. (2008). Towards a consensus for calculating dendrogram‐based functional diversity indices. Oikos, 117(5), 794-800.
Mouchet, M. A., Villeger, S., Mason, N. W. H., & Mouillot, D. (2010). Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24(4), 867-876. doi:10.1111/j.1365-2435.2010.01695.x
Mouillot, D., Villeger, S., Scherer-Lorenzen, M., & Mason, N. W. H. (2011). Functional Structure of Biological Communities Predicts Ecosystem Multifunctionality. Plos One, 6(3), 9. doi:10.1371/journal.pone.0017476
Nock, C. A., Vogt, R. J., & Beisner, B. E. (2001). Functional traits. eLS, 1-8.
Oscoz, J., Leunda, P. M., Miranda, R., Garcia-Fresca, C., Campos, F., & Escala, M. C. (2005). River channelization effects on fish population structure in the Larraun river (Northern Spain). Hydrobiologia, 543, 191-198. doi:10.1007/s10750-004-7422-2
Parker, J., Cao, Y., Sass, G. G., & Epifanio, J. (2018). Large river fish functional diversity responses to improved water quality over a 28 year period. Ecological Indicators, 88, 322-331. doi:10.1016/j.ecolind.2018.01.035
Pegg, M. A., & Pierce, C. L. (2002). Fish community structure in the Missouri and lower Yellowstone rivers in relation to flow characteristics. Hydrobiologia, 479(1), 155-167. doi:10.1023/a:1021038207741
Petchey, O. L., & Gaston, K. J. (2002). Functional diversity (FD), species richness and community composition. Ecology letters, 5(3), 402-411.
Poulet, N. (2007). Impact of weirs on fish communities in a piedmont stream. River Research and Applications, 23(9), 1038-1047. doi:10.1002/rra.1040
Purvis, A., & Hector, A. (2000). Getting the measure of biodiversity. Nature, 405(6783), 212.
Ramirez, A., Engman, A., Rosas, K. G., Perez-Reyes, O., & Martino-Cardona, D. M. (2012). Urban impacts on tropical island streams: Some key aspects influencing ecosystem response. Urban Ecosystems, 15(2), 315-325. doi:10.1007/s11252-011-0214-3
Rao, C. R. (1982). Diversity and dissimilarity coefficients: a unified approach. Theoretical Population Biology, 21(1), 24-43.
Ricotta, C. (2005). Through the jungle of biological diversity. Acta Biotheoretica, 53(1), 29-38. doi:10.1007/s10441-005-7001-6
Sagouis, A., Jabot, F., & Argillier, C. (2017). Taxonomic versus functional diversity metrics: how do fish communities respond to anthropogenic stressors in reservoirs? Ecology of freshwater fish, 26(4), 621-635.
Schlosser, I. J. (1995). Critical landscape attributes that influence fish population dynamics in headwater streams. Hydrobiologia, 303(1-3), 71-81. doi:10.1007/bf00034045
Schmera, D., Podani, J., & Erős, T. (2009). Measuring the contribution of community members to functional diversity. Oikos, 118(7), 961-971.
Suen, J. P., & Herricks, E. E. (2006). Investigating the causes of fish community change in the Dahan River (Taiwan) using an autecology matrix. Hydrobiologia, 568(1), 317-330.
Teichert, N., Lepage, M., & Lobry, J. (2018). Beyond classic ecological assessment: The use of functional indices to indicate fish assemblages sensitivity to human disturbance in estuaries. Science of the Total Environment, 639, 465-475. doi:10.1016/j.scitotenv.2018.05.179
Truchy, A., Angeler, D. G., Sponseller, R. A., Johnson, R. K., & McKie, B. G. (2015). Linking Biodiversity, Ecosystem Functioning and Services, and Ecological Resilience: Towards an Integrative Framework for Improved Management. In G. Woodward & D. A. Bohan (Eds.), Ecosystem Services: From Biodiversity to Society, Pt 1 (Vol. 53, pp. 55-96). San Diego: Elsevier Academic Press Inc.
Verdonschot, R. C. M., Kail, J., McKie, B. G., & Verdonschot, P. F. M. (2016). The role of benthic microhabitats in determining the effects of hydromorphological river restoration on macroinvertebrates. Hydrobiologia, 769(1), 55-66. doi:10.1007/s10750-015-2575-8
Villeger, S., Mason, N. W. H., & Mouillot, D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89(8), 2290-2301. doi:10.1890/07-1206.1
Walker, B., Kinzig, A., & Langridge, J. (1999). Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems, 2(2), 95-113.
Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, P. D., Groffman, P. M., & Morgan, R. P. (2005). The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society, 24(3), 706-723.
Wilkinson, C. L., Yeo, D. C. J., Hui, T. H., Fikri, A. H., & Ewers, R. M. (2018). Land-use change is associated with a significant loss of freshwater fish species and functional richness in Sabah, Malaysia. Biological Conservation, 222, 164-171. doi:10.1016/j.biocon.2018.04.004
Zhou, L., Guo, D. L., Zeng, L., Xu, P., Tang, Q. D., Chen, Z., Zhu, Q. Y., Wang, G. P., Chen, Q. F., Chen, L. A., Luo, Y., & Li, G. F. (2018). The structuring role of artificial structure on fish assemblages in a dammed river of the Pearl River in China. Aquatic Living Resources, 31, 9. doi:10.1051/alr/2018003
周明泰,高瑞卿,台灣淡水及河口魚圖鑑,晨星出版有限公司,(2011)。
孫建平,曹先紹,E. E. Herricks,魚類生態矩陣之建立及其於生態工程之應用,台灣水利第53卷第2期,pp.86-93,(2005)。
葉柏緯. (2014). 伏流水對魚類棲地之影響─以五溝水湧泉濕地為例. (碩士), 國立成功大學水利及海洋工程學系碩士論文, 台南市. Retrieved from https://hdl.handle.net/11296/24e24e