| 研究生: |
黃柏叡 Huang, Po-Jui |
|---|---|
| 論文名稱: |
積層製造生醫用鈦金屬表面改質之抗菌性研究 Surface Modification of Additively Manufactured Medical Titanium Alloy in Antibacterial Application |
| 指導教授: |
李澤民
Lee, Tzer-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 奈米銀 、積層製造 、微弧氧化 、抗菌 、Ti6Al4V |
| 外文關鍵詞: | Ti6Al4V, Additive Manufacturing, Micro arc oxidation (MAO), Silver nanoparticles, Antibacterial |
| 相關次數: | 點閱:42 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
選擇性雷射熔融技術(Selective laser melting,SLM)是一種積層製造(AM) 技術,利用高能量的雷射束作為熱源將金屬粉末逐層熔融和固化,最終形成三 維結構。與傳統的熔融和鑄造技術不同,通過適當的表面改性,它可以增強表 面的生物活性,幫助骨組織與植入材料的結合,同時也防止細菌附著和植入相 關感染。本實驗採用兩種不同的電解質(硝酸銀和納米銀),利用微弧氧化技 術在 SLM 鈦表面製備多孔氧化物塗層,旨在研究這兩種電解質產生的氧化物 塗層的物理化學特性,生物活性及抗菌性。掃描電子顯微鏡(SEM)結果表明, 隨著電壓的增加,火山孔孔徑變大,孔洞數目減低,這也導致接觸角降低,表 面粗糙度增大。X 射線衍射(XRD)結果顯示,微弧氧化塗層由氧化鈦組成, 包括金紅石和銳鈦礦相,以及 CaP 化合物的存在,這有助於骨組織與塗層的結 合。提高銀的添加濃度時,X 射線光電子能譜(XPS)結果顯示,硝酸銀組別 達到 1.78 at.%,奈米銀的組別達到 1.31 at.%,這對後續的抗菌研究表現有益。 抗菌結果顯示,添加 1.5 mM 硝酸銀組別達到 60%的抗菌性,添加 1.5 mM 奈 米銀組別則略低於硝酸銀 1.5 mM 組別,然而,在細胞活性結果顯,添加 1.5 mM 銀含量的組別細胞活性大幅降低,這些結果表明,銀雖然可以提高抗菌能 力,但也會大幅降低細胞活性,然而,在低濃度硝酸銀和奈米銀的組別皆有良 好的細胞活性,抗菌性也趨近於 50%,這是助於骨組織與塗層的結合;硝酸銀 和納米銀都嵌入在塗層中,這也有利於抗菌性能。
Selective Laser Melting is an AM technology that utilizes a high-energy laser beam as a heat source to selectively melt and solidify metal powder layer by layer, ultimately forming a three-dimensional structure. Unlike traditional melting and casting techniques, SLM can enhance surface bioactivity through appropriate surface modification, aiding the integration of bone tissue with implant materials while also preventing bacterial adhesion and implant-related infections. In this experiment, porous oxide coatings were prepared on SLM titanium surfaces using micro-arc oxidation technology with two different electrolytes (silver nitrate and nano-silver). The study aimed to investigate the physicochemical properties, bioactivity, and antibacterial properties of the oxide coatings produced by these two electrolytes. SEM results indicated that as the voltage increased, the pore size of the volcanic pores enlarged, and the number of pores decreased, leading to a reduction in contact angle and an increase in surface roughness. XRD results showed that the micro arc oxidation coatings were composed of titanium oxide, including rutile and anatase phases, as well as the presence of CaP compounds, which contribute to the integration of bone tissue with the coating. When the concentration of silver was increased, XPS results revealed that the silver nitrate group reached 1.78 at.%, while the nano-silver group reached 1.31 at.%, which is beneficial for subsequent antibacterial studies. Antibacterial results showed that the group with 1.5 mM silver nitrate achieved 60% antibacterial efficacy, while the 1.5 mM nano silver group was slightly lower than the 1.5 mM silver nitrate group. However, cell viability results indicated a significant decrease in cell viability in the group with 1.5 mM silver content. These findings suggest that while silver can enhance antibacterial properties, it also significantly reduces cell viability. Nevertheless, the groups with low concentrations of silver nitrate and nano silver exhibited good cell viability and antibacterial efficacy close to 50%, which is conducive to the integration of bone tissue with the coating. Both silver nitrate and nano silver were embedded in the coating, which also contributes to antibacterial performance.
[1] D.F. Williams, On the mechanisms of biocompatibility, Biomaterials 29 (2008) 2941-2953.
[2] L.L. Hench, Bioceramics: From concept to clinic, Journal of the American Ceramic Society 74 (1991) 1487-1510.
[3] J. Black, Biological Performance of Materials: Fundamentals of Biocompatibility, CRC Press 2005.
[4] D.F. Williams, Definitions in biomaterials: Proceedings of a Consensus Conference of the European Society for Biomaterials, Elsevier 1987.
[5] A. Ewald, K.H. Glüsenkamp, M. Köller, U. Gbureck, Antimicrobial titanium/silver PVD coatings on titanium, BioMedical Engineering OnLine 11 (2012) 18.
[6] M. Navarro, A. Michiardi, O. Castaño, J.A. Planell, Biomaterials in orthopaedics, Journal of the Royal Society Interface 5 (2008) 1137-1158.
[7] K. Anselme, Osteoblast adhesion on biomaterials, Biomaterials 21 (2000) 667- 681.
[8] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27 (2006) 2907-2915.
[9] S.V. Dorozhkin, Bioceramics of calcium orthophosphates, Biomaterials 31(7) (2010) 1465-1485.
[10] P. Feng, J. He, S. Peng, C. Gao, Z. Zhao, S. Xiong, C. Shuai, Characterizations and interfacial reinforcement mechanisms of multicomponent biopolymer based scaffold, Materials science & engineering. C, Materials for biological applications 100 (2019) 809-825.
[11] J. Park, R.S. Lakes, Biomaterials: an introduction, Springer Science & Business Media2007.
[12]M. McCracken, Dental implant materials: commercially pure titanium and titanium alloys, Journal of prosthodontics 8(1) (1999) 40-43.
[13] M. Balazic, J. Kopac, M.J. Jackson, W. Ahmed, Titanium and titanium alloy applications in medicine, International Journal of Nano and Biomaterials 1(1) (2007) 3-34.
[14] B. Bannon, E. Mild, Titanium alloys for biomaterial application: an overview, Titanium alloys in surgical implants, ASTM International1983.
[15]M. Niinomi, C.J. Boehlert, Titanium alloys for biomedical applications, Advances in Metallic Biomaterials, Springer2015, pp. 179-213.
[16] H. Sibum, Titanium and Titanium Alloys—From Raw Material to Semi‐finished Products, Advanced Engineering Materials 5(6) (2003) 393-398.
[17]M. Niinomi, Recent metallic materials for biomedical applications, Metallurgical and materials transactions A 33(3) (2002) 477.
[18] V . Oliveira, R. Chaves, R. Bertazzoli, R. Caram, Preparation and characterization of Ti-Al-Nb alloys for orthopedic implants, Brazilian Journal of Chemical Engineering 15(4) (1998) 326-333.
[19] Y.C. Huang, Y.C. Huang, S.J. Ding, Primary stability of implant placement and loading related to dental implant materials and designs: a literature review, Journal of Dental Sciences 18 (2023) 1467-1476.
[20] F. Guillemot, Recent advances in the design of titanium alloys for orthopedic applications, Expert Review of Medical Devices 2 (2005) 741-748.
[21] A. Krząkała, K. Służalska, G. Dercz, A. Maciej, A. Kazek, J. Szade, A. Winiarski, M. Dudek, J. Michalska, G. Tylko, Characterisation of bioactive films on Ti– 6Al–4V alloy, Electrochimica Acta 104 (2013) 425-438.
[22] K. Wang, The use of titanium for medical applications in the USA, Materials Science and Engineering: A 213(1-2) (1996) 134-137.
[23] W.L. Murphy, T.C. McDevitt, A.J. Engler, Materials as stem cell regulators, Nature materials 13(6) (2014) 547-557.
[24] R. Zhou, D. Wei, J. Cao, W. Feng, S. Cheng, Q. Du, B. Li, Y. Wang, D. Jia, Y. Zhou, Synergistic effects of surface chemistry and topologic structure from modified microarc oxidation coatings on Ti implants for improving osseointegration, ACS applied materials & interfaces 7(16) (2015) 8932-8941.
[25] L. Zhao, S. Mei, P.K. Chu, Y. Zhang, Z. Wu, The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions, Biomaterials 31(19) (2010) 5072-5082.
[26] H. Ishizawa, M. Ogino, Thin hydroxyapatite layers formed on porous titanium using electrochemical and hydrothermal reaction, Journal of materials science 31(23) (1996) 6279-6284.
[27] T. Albrektsson, P.-I. Brånemark, H.-A. Hansson, J. Lindström, Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to- implant anchorage in man, Acta Orthopaedica Scandinavica 52(2) (1981) 155- 170.
[28] Y. Liu, D. Luo, T. Wang, Hierarchical structures of bone and bioinspired bone tissue engineering, Small 12(34) (2016) 4611-4632.
[29] M.M. Stevens, J.H. George, Exploring and engineering the cell surface interface, Science 310(5751) (2005) 1135-1138.
[30]W.-H. Song, Y.-K. Jun, Y. Han, S.-H. Hong, Biomimetic apatite coatings on micro-arc oxidized titania, Biomaterials 25(17) (2004) 3341-3349.
[31] S. Abbasi, F. Golestani-Fard, H. Rezaie, S. Mirhosseini, A. Ziaee, MAO-derived hydroxyapatite–TiO2 nanostructured bio-ceramic films on titanium, Materials Research Bulletin 47(11) (2012) 3407-3412.
[32] D. Ke, A.A. Vu, A. Bandyopadhyay, S. Bose, Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants, Acta biomaterialia 84 (2019) 414-423.
[33] E. Ahounbar, S.M.M. Khoei, H. Omidvar, Characteristics of in-situ synthesized hydroxyapatite on TiO2 ceramic via plasma electrolytic oxidation, Ceramics International 45(3) (2019) 3118-3125.
[34] Y. Zhu, K. Zhang, R. Zhao, X. Ye, X. Chen, Z. Xiao, X. Yang, X. Zhu, K. Zhang, Y. Fan, Bone regeneration with micro/nano hybrid-structured biphasic calcium phosphate bioceramics at segmental bone defect and the induced immunoregulation of MSCs, Biomaterials 147 (2017) 133-144.
[35] A. Najafinezhad, M. Abdellahi, H. Ghayour, A. Soheily, A. Chami, A. Khandan, A comparative study on the synthesis mechanism, bioactivity and mechanical properties of three silicate bioceramics, Materials Science and Engineering: C 72 (2017) 259-267.
[36]P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: Synthesis and applications, Angewandte Chemie International Edition 50 (2011) 2904-2939.
[37] Y. Wang, H. Yu, C. Chen, Z. Zhao, Review of the biocompatibility of micro-arc oxidation coated titanium alloys, Materials & Design 85 (2015) 640-652.
[38] A. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. Dowey, Plasma electrolysis for surface engineering, Surface and coatings technology 122(2-3) (1999) 73-93.
[39]J.R. Jones, Review of bioactive glass: From Hench to hybrids, Acta Biomaterialia 9 (2013) 4457-4486.
[40] H.D. Jang, S.B. Kim, J.H. Song, Antimicrobial properties of nano-sized silver colloidal solution against selected pathogenic bacteria, Colloids and Surfaces B: Biointerfaces 41 (2005) 185-191.
[41] L.S. Nair, C.T. Laurencin, Polymers as biomaterials for tissue engineering and controlled drug delivery, Advances in Biochemical Engineering/Biotechnology 102 (2006) 47-90.
[42] L.L. Hench, Bioceramics, Journal of the American Ceramic Society 81 (1998) 1705-1728.
[43]M. De, P.S. Ghosh, V.M. Rotello, Applications of nanoparticles in biology, Advanced Materials 20 (2008) 4225-4241.
[44] B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, Academic Press 2004.
[45] Sondi and B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, Journal of Colloid Interface 275 (2004) 177-182.
[46]V. Q. Nguyen, Interaction of Silver Nanoparticles and Chitin Power with Different Sizes and Surface Structures: The Correlation with Antimicrobial Activities, Journal of Nanomaterials (2013) 1-9.
[47] Jinguo Ge, A detailed analysis on the microstructure and compressive properties of selective laser melted Ti6Al4V lattice structures, Materials & Design 198(2021).
[48]L.H. Li, Y.M. Kong, Improved biological performance of Ti implants due to surface modification by micro-arc oxidation, Biomaterials 25(2004) 2867-2875.
[49] M.R. Bayati, F. Golestani-Fard, How photocatalytic activity of the MAO-grown TiO2 nano/micro-porous films is influenced by growth parameters, Applied Surface Science 256 (2010) 4253–4259.
[50]Yajie Chu, Influence of Applied Voltage on Surface Morphology and Wettability of Biological Coatings on Ti6-Al-4V by Micro-Arc Oxidation Treatment, Materials Research, 23(1) 2020.
[51] Zhenfei Liu, Weiqiang Wang, Formation and characterization of titania coatings with cortex-like slots formed on Ti by micro-arc oxidation treatment, Applied Surface Science 266 (2013) 250–255.
[52] N. Xiang, R.G. Song, A study on photocatalytic activity of micro-arc oxidation TiO2 films and Ag+/MAO-TiO2 composite films, Applied Surface Science 347 (2015) 454–460.
[53]Y.M Zhang, P. Bataillon-Linez, Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior, Journal of Biomedical Materials Research Part A 68A(2004) 383-391.
[54] Moulder, J. F., Stickle, W. F., Sobol, P. E., Bomben, K. D., Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, (1992).
[55] Ana Maria Ferraria, X-ray photoelectron spectroscopy: Silver salts revisited, Vacuum 86 (2012) .
[56]Mahendra Rai, Silver nanoparticles as a new generation of antimicrobials, Biotechnology Advances 27 (2009) 76–83.
[57]Tikam Chand Dakal, Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles, frontiers in microbiology 16 (2016).
校內:2029-08-22公開