研究生: |
王品瑜 Wang, Pin-Yu |
---|---|
論文名稱: |
關於一維的廣義量子Zakharov系統的局部適定性結果 A result of local well-posedness for the general quantum Zakharov system in one dimension |
指導教授: |
史習偉
Shih, Hsi-Wei |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 76 |
中文關鍵詞: | Zakharov 系統 、量子 Zakharov 系統 、general Zakharov 系統 、general 量子 Zakharov 系統 、局部適定性 、Strichartz 估計 、四階薛丁格方程 、四階波方程 |
外文關鍵詞: | Zakharov system, quantum Zakharov system, general Zakharov system, general quantum Zakharov system, local well-posedness, Strichartz estimates, fourth-order Schrödinger equation, fourth-order wave equation |
相關次數: | 點閱:134 下載:20 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文裡我們探討了一維的 general quantum Zakharov system 在一個 distinguishied polynomial 狀況下的局部適定性問題,見(1.1)-(1.2)。此系統是接續 [9] 以 及 [6] 的延伸,我們將使用 Bourgain space,[10] 中使用的方法,[8, 15] 拓展 [10] 的一些工具,給出 QZSγ, γ = 1.5,Schrödinger 方程捨掉絕對值狀況的局部適定性範圍。
In this paper, we consider the local well-posedness problem for the general quantum Zakharov system in the distinguished polynomial case in 1-dimension. This system is extended from [9] and [6]. Use Bourgain space, the method in [10], and some tools in [8, 15] which was extended form [10], we will give the well-posed region for QZSγ in γ = 1.5. Schrödinger part considered here do not with an absolute value like what appears in Schrödinger equation of QZSγ.
[1] H. Added and S. Added, Existence globale de solutions fortes pour les équations de la turbulence de Langmuir en dimension 2, C. R. Acad. Sci. Paris 299, 551-554, 1984.
[2] Bourgain, Jean, and J. Colliander. ”On wellposedness of the Zakharov system.” Inter- national Mathematics Research Notices 1996.11, 515-546, 1996.
[3] Bejenaru, I., Guo, Z., Herr, S., and Nakanishi, K. Well-posedness and scattering for the Zakharov system in four dimensions. Analysis & PDE, 8(8), 2029-2055, 2015.
[4] Bejenaru, I., & Herr, S. Convolutions of singular measures and applications to the Za- kharov system. Journal of Functional Analysis, 261(2), 478-506, 2011.
[5] Bejenaru, I., Herr, S., Holmer, J., & Tataru, D. On the 2D Zakharov system with L2 Schrödinger data. Nonlinearity, 22(5), 1063–1089, 2009.
[6] Colliander, James Ellis. ”The initial value problem for the Zakharov system.”, 5427- 5427, 1998.
[7] Chen, T. J., Fang, Y. F., Wang, K. H. Low regularity global well-posedness for the quantum Zakharov system in 1D. Taiwanese Journal of Mathematics, 21(2), 341-36, 2017.
[8] Fang, Y.-F., Shih, H.-W., & Wang, K.-H. Local well-posedness for the quantum Za- kharov system in one spatial dimension. Journal of Hyperbolic Differential Equations, 14(01), 157–192, 2017.
[9] Garcia, L. G., Haas, F., De Oliveira, L.P.L., & Goedert, J. Modified Zakharov equations for plasmas with a quantum correction. Physics of Plasmas, 12(1), 012302, 2005.
[10] Ginibre, Jean, Yoshio Tsutsumi, and Giorgio Velo. ”On the Cauchy problem for the Zakharov system.” Journal of Functional Analysis 151.2, 384-436, 1997.
[11] Guo, Yanfeng, Jingjun Zhang, and Boling Guo. ”Global well-posedness and the classical limit of the solution for the quantum Zakharov system.” Zeitschrift für angewandte Mathematik und Physik 64.1, 53-68, 2013.
[12] Jiang, J. C., Lin, C. K., Shao, S. On one dimensional quantum Zakharov system. arXiv preprint arXiv:1412.2882, 2014.
[13] Ozawa, T., Tsutsumi, Y. Existence and smoothing effect of solutions for the Zakharov equations. Publications of the Research Institute for Mathematical Sciences, 28(3), 329- 361, 1992.
[14] Sulem, C., &PL, S. Quelques résultats de régularité pour les équations de la turbulence de Langmuir, 1979.
[15] Wang, Kuan Hsiang.”On Quantum Zakharov System in One Spatial Dimension.”,1-95, 2017.
[16] Zakharov, Vladimir E.”Collapse of Langmuir waves.” Sov. Phys. JETP 35.5, 908-914, 1972.