簡易檢索 / 詳目顯示

研究生: 王品瑜
Wang, Pin-Yu
論文名稱: 關於一維的廣義量子Zakharov系統的局部適定性結果
A result of local well-posedness for the general quantum Zakharov system in one dimension
指導教授: 史習偉
Shih, Hsi-Wei
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 76
中文關鍵詞: Zakharov 系統量子 Zakharov 系統general Zakharov 系統general 量子 Zakharov 系統局部適定性Strichartz 估計四階薛丁格方程四階波方程
外文關鍵詞: Zakharov system, quantum Zakharov system, general Zakharov system, general quantum Zakharov system, local well-posedness, Strichartz estimates, fourth-order Schrödinger equation, fourth-order wave equation
相關次數: 點閱:134下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文裡我們探討了一維的 general quantum Zakharov system 在一個 distinguishied polynomial 狀況下的局部適定性問題,見(1.1)-(1.2)。此系統是接續 [9] 以 及 [6] 的延伸,我們將使用 Bourgain space,[10] 中使用的方法,[8, 15] 拓展 [10] 的一些工具,給出 QZSγ, γ = 1.5,Schrödinger 方程捨掉絕對值狀況的局部適定性範圍。

    In this paper, we consider the local well-posedness problem for the general quantum Zakharov system in the distinguished polynomial case in 1-dimension. This system is extended from [9] and [6]. Use Bourgain space, the method in [10], and some tools in [8, 15] which was extended form [10], we will give the well-posed region for QZSγ in γ = 1.5. Schrödinger part considered here do not with an absolute value like what appears in Schrödinger equation of QZSγ.

    1 Introduction . . . 1 2 Notation . . . 6 3 Local Well-Posedness for General Quantum Zakharov System . . . 8 3.1 Solution formulas, linear estimates, and some other tools . . . 8 3.2 Multilinear Estimates . . . 13 3.3 Multilinear Estimates for Schrödinger Part . . . 17 3.4 Multilinear Estimates for Wave Part . . . 53 3.5 MainResults . . . 70 References . . . 75

    [1] H. Added and S. Added, Existence globale de solutions fortes pour les équations de la turbulence de Langmuir en dimension 2, C. R. Acad. Sci. Paris 299, 551-554, 1984.

    [2] Bourgain, Jean, and J. Colliander. ”On wellposedness of the Zakharov system.” Inter- national Mathematics Research Notices 1996.11, 515-546, 1996.

    [3] Bejenaru, I., Guo, Z., Herr, S., and Nakanishi, K. Well-posedness and scattering for the Zakharov system in four dimensions. Analysis & PDE, 8(8), 2029-2055, 2015.

    [4] Bejenaru, I., & Herr, S. Convolutions of singular measures and applications to the Za- kharov system. Journal of Functional Analysis, 261(2), 478-506, 2011.

    [5] Bejenaru, I., Herr, S., Holmer, J., & Tataru, D. On the 2D Zakharov system with L2 Schrödinger data. Nonlinearity, 22(5), 1063–1089, 2009.

    [6] Colliander, James Ellis. ”The initial value problem for the Zakharov system.”, 5427- 5427, 1998.

    [7] Chen, T. J., Fang, Y. F., Wang, K. H. Low regularity global well-posedness for the quantum Zakharov system in 1D. Taiwanese Journal of Mathematics, 21(2), 341-36, 2017.

    [8] Fang, Y.-F., Shih, H.-W., & Wang, K.-H. Local well-posedness for the quantum Za- kharov system in one spatial dimension. Journal of Hyperbolic Differential Equations, 14(01), 157–192, 2017.

    [9] Garcia, L. G., Haas, F., De Oliveira, L.P.L., & Goedert, J. Modified Zakharov equations for plasmas with a quantum correction. Physics of Plasmas, 12(1), 012302, 2005.

    [10] Ginibre, Jean, Yoshio Tsutsumi, and Giorgio Velo. ”On the Cauchy problem for the Zakharov system.” Journal of Functional Analysis 151.2, 384-436, 1997.

    [11] Guo, Yanfeng, Jingjun Zhang, and Boling Guo. ”Global well-posedness and the classical limit of the solution for the quantum Zakharov system.” Zeitschrift für angewandte Mathematik und Physik 64.1, 53-68, 2013.

    [12] Jiang, J. C., Lin, C. K., Shao, S. On one dimensional quantum Zakharov system. arXiv preprint arXiv:1412.2882, 2014.

    [13] Ozawa, T., Tsutsumi, Y. Existence and smoothing effect of solutions for the Zakharov equations. Publications of the Research Institute for Mathematical Sciences, 28(3), 329- 361, 1992.

    [14] Sulem, C., &PL, S. Quelques résultats de régularité pour les équations de la turbulence de Langmuir, 1979.

    [15] Wang, Kuan Hsiang.”On Quantum Zakharov System in One Spatial Dimension.”,1-95, 2017.

    [16] Zakharov, Vladimir E.”Collapse of Langmuir waves.” Sov. Phys. JETP 35.5, 908-914, 1972.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE