| 研究生: |
陳聖中 Chen, Sheng-Jhong |
|---|---|
| 論文名稱: |
應用圓錐滾子軸承於斜齒輪轉子系統之動態分析 Dynamic Analysis of a Helical Geared Rotor System with Tapered Roller Bearing |
| 指導教授: |
崔兆棠
Choi, Siu-Tong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 圓錐滾子軸承 、斜齒輪 、有限元素法 |
| 外文關鍵詞: | tapered roller bearing, helical gear, finite element method |
| 相關次數: | 點閱:126 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以有限元素法(Finite Element Method)模擬圓錐滾子軸承應用於斜齒輪轉子系統之動態行為。系統轉軸模擬為Timoshenko樑,即考慮轉軸的剪力變形效應及旋轉慣性;轉盤假設為剛體,並考慮其質量偏心與陀螺效應;軸承以圓錐滾子軸承來模擬;齒輪對視為線性彈簧及阻尼器沿著壓力線連接的兩個剛性轉盤來模擬。本文探討圓錐滾子軸承之軸承參數對系統側向及軸向響應之影響。從數值結果得知,隨著軸承上的滾子數量增加,系統的臨界轉速會隨之上升,而穩態響應則隨之下降。當滾子接觸角度增大時,系統的側向響應隨之上升,同時軸向響應隨之下降,臨界轉速則隨接觸角度上升而下降。若滾子的徑向間隙增大,系統臨界轉速隨之降低,共振響應則會隨之上升。
In this thesis, dynamic analysis of a helical geared rotor system with tapered roller bearing is studied by using the finite element method. Rotating shafts are modeled as Timoshenko beam, which includes the effect of shear deformation and rotary inertia. Bearings are modeled as Tapered roller bearing. Disks are assumed to be rigid, and their gyroscopic effect is taken into account. The gear mesh is modeled as a pair of rigid disks connected with spring-damped set along the pressure line. In this thesis, we investigate effects of bearing parameters such as different number of rollers, roller contact angle, and roller radial clearance on lateral response and axial response of the system. Numerical results show that as the number of rollers increases, the critical speed increases, while the response reduces. When the roller contact angle increases, the lateral response increases, while the axial response reduces, and critical speed decreases. If the radial clearance increases, the critical speed decreases, and the resonance response increases.
[1]Ruhl, R. L., and Booker, J. F., “A Finite Element Model for Distributed Parameter Turborotor System,” ASME, Journal of Engineering for Industry, Vol. 94, pp. 126-132, 1972.
[2]Nelson, H. D., and McVaugh, J. M., “The Dynamics of Rotor-Bearing Systems Using Finite Elements,” ASME, Journal of Engineering for Industry, Vol. 98, pp. 593-600, 1976.
[3]Nelson, H. D., “A Finite Rotating Shaft Element Using Timoshenko Beam Theory,” ASME, Journal of Mechanical Design, Vol. 102, pp. 793-803, 1980.
[4]Greenhill, L. M., Bickford, W. B., and Nelson, H. D., “A Conical Beam Finite Element for Rotor Dynamic Analysis,” ASME, Journal of Vibration Acoustics, Stress, Reliability in Design, Vol. 107, pp. 421-430, 1985.
[5]Lund, J., “Critical Speeds, Stability and Response of Geared Train of Rotors,” ASME, Journal of Mechanical Design, Vol. 100, pp. 535-539, 1978.
[6]Ozgu ̈ven, H. N., and Ozkan, L. Z., 1984, “Whirl Speeds and Unbalance Response of Multi-Bearing Rotors Using Finite Elements,” ASME Journal of Vibration and Acoustics, Vol. 106, pp. 72-79, 1984.
[7]Kahraman, A., Ozgu ̈ven, H. N., Houser, D. R., and Zakrajsek, J. J., “Dynamic Analysis of Geared Rotors by Finite Elements,” ASME, Journal of Mechanical Design, Vol. 114, pp. 507-514, 1992.
[8]Rao, J. S., Shiau, T. N., and Chang, J. R., “Dynamic Behavior of Geared Rotors,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 121, pp. 494-503, 1999.
[9]Choi, S. T., and Mau, S. Y., “Dynamic Analysis of Geared Rotor-Bearing System by the Transfer Matrix Method,” ASME, Journal of Mechanical Design, Vol. 123, pp. 562-568, 2001.
[10]Chen, Y. C., Dynamic Analysis of a Geared Rotor-Bearing System, Doctoral Dissertation, National Cheng Kung University, 2014.
[11]Kahraman, A., “Effect of Axial Vibrations on the Dynamics of a Helical Gear Pair,” ASME, Journal of Vibration and Acoustics, Vol. 115, pp. 33-39, 1993.
[12]Kahraman, A., “Dynamic Analysis of a Multi-Mesh Helical Gear Train,” ASME, Journal of Mechanical Design, Vol. 116, pp. 706-712, 1994.
[13]Kubur, M., Kahraman, A., Zini, D. M., and Kienzle, K., “Dynamic Analysis of a Multi-Shaft Helical Gear Transmission by Finite Elements: Model and Experiments,” ASME, Journal of Mechanical Design, Vol. 126, pp. 398-406, 2004.
[14]Draca, S., Finite Element Model of a Double-Stage Helical Gear Reduction, Doctoral Dissertation, University of Windsor, 2006.
[15]Feng, K., Matsumura, S., and Houjoh, H., “Dynamic Behavior of Helical Gears with Effects of Shaft and Bearing Flexibilities,” Applied Mechanics and Materials, Vol. 86, pp. 26-29, 2011.
[16]Zhang, Y., Wang, Q., Ma, H., Huang, J., and Zhao, C., “Dynamic Analysis of Three-Dimensional Helical Geared Rotor System with Geometric Eccentricity,” KSME, Journal of Mechanical Science and Technology, Vol. 27, pp. 3231-3242, 2013.
[17]楊介偉, 斜齒輪應用於齒輪轉子軸承系統, 國立成功大學航空太空工程研究所碩士論文, 2015.
[18]Lim, T. C., and Singh, R., “Vibration Transmission Through Rolling Element Bearings, Part I: Bearing Stiffness Formulation,” Journal of Sound and Vibration, Vol. 139, pp. 179-199, 1990.
[19]Lim, T. C., and Singh, R., “Vibration Transmission Through Rolling Element Bearings, Part II: System Studies,” Journal of Sound and Vibration, Vol. 139, pp. 201-225, 1990.
[20]Filiz, I. H., and Gorur, G., “Analysis of Preloaded Bearings under Combined Axial and Radial Loading,” International Journal of Machine Tools and Manufacture, Vol. 34, No. 1, pp. 1-11, 1994.
[21]Liew, H. V., and Lim, T. C., “Analysis of Time-Varying Rolling Element Bearing Characteristics,” Journal of Sound and Vibration, Vol. 283, pp. 1163-1179, 2005.
[22]黃忠立, 轉子-軸承系統在多臨界轉速限制下之輕量化設計, 國立成功大學航空太空工程研究所碩士論文, 1987.
[23]阮競揚, 含橫向裂縫的轉子軸承系統之動態特性分析, 國立成功大學航空太空工程研究所碩士論文, 1997.
校內:立即公開