簡易檢索 / 詳目顯示

研究生: 李芳如
Lee, Fang-Ju
論文名稱: 偵測碰撞時間與視角的無人飛行載具空中避撞系統演算法
TCAS Algorithm using Time and Sector Recognition for UAS
指導教授: 林清一
Lin, Chin-E
學位類別: 碩士
Master
系所名稱: 工學院 - 民航研究所
Institute of Civil Aviation
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 71
中文關鍵詞: 空中避撞廣播式自動監視回報無人載具直升機
外文關鍵詞: TCAS, ADS-B, conflict detection, UAS, helicopter
相關次數: 點閱:129下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空中防撞系統已廣泛應用於有人的航空器上;隨著無人機的發展,並將其應用於飛行任務已是未來的趨勢,因此,建立一套無人機的防撞系統是必要的工作。
    本論文在探討無人機與有人機在執行任務時的防撞演算與系統研究,有人機預先設定為直升機,利用ADS-B與TCAS的相關理論建立一個適合無人機的防撞演算法,在演算上,利用時間與速度規劃出一個扇形的避撞偵測區域,並利用此扇形去做偵測與避撞的演算,最後藉由超輕飛行器模擬無人機與直升機去做數據模擬,藉此驗證演算法及避讓指令的可行性,給予任務中飛行的安全保障。

    The development of unmanned aerial aircrafts (UAVs) has made great progress recently for its broad uses in disaster rescue missions or civilian applications. UAV may joint operation in missions with manned aircraft, mostly by helicopter. A suitable traffic alert and collision avoidance system (TCAS) is important. This thesis uses the concept of automatic dependent surveillance-broadcast (ADS-B) to establish a collision avoidance system for UAVs and helicopter. The proposed detection algorithm creates sectors to describe their possible variation for UAV and helicopter; its radius is calculated by time and speed. It uses overlapping of area for threat and conflict assessments. This thesis set up a cheese cake detection model in horizontal and vertical plane and uses overlapped area to establish an avoidance collision maneuver.
    The real flight experiment uses the ultra light aircraft (ULA) to simulate helicopter and UAV. And the maneuver uses the true flight path to execute the simulation verification experiment. The result had confirmed the feasible development of TCAS for UAV and helicopter in mission airspace.

    ABSTRACT i 摘要 ii 謝誌 iii CONTENT iv LIST OF FIGURES vi LIST OF TABLES viii CHAPTER I 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Literature Survey 2 1.3 Main Idea 8 1.4 Thesis Outline 10 CHAPTER II 11 AIRBORNE COLLISION SYSTEMS and QUASI–ADS-B 11 2.2 Overview of TCAS 11 2.2.1 TCAS History 11 2.2.2 TCAS I 12 2.2.3 TCAS II 12 2.2.4 TCAS III 15 2.2.5 TCAS IV 15 2.2 Overview of HCAS 17 2.2.1 What is HCAS 17 2.2.2 Application of HCAS 18 2.3 Quasi-ADS-B for TCAS 20 2.3.1 What is Quasi-ADS-B 20 2.3.2 How Quasi-ADS-B work 21 2.4 TCAS for UAS 23 CHAPTER III 25 TCAS DETECTION ALGORITH 25 3.1 Fundamental prediction methods 25 3.2 Detection concept 27 3.3 Algorithm 30 3.3.1 Coordinate system and transformations 30 3.3.2 Vertical detection 32 3.3.3 Horizontal detection 33 3.4 Remark 36 CHAPTER IV 38 TCAS RESOLUTION ALGORITHM 38 4.1 Priority 38 4.1.1 Right turn rule 38 4.1.2 Priority criteria of HCAS 41 4.2 Turn Angle 42 4.2.1 Definition turn angle 42 4.2.2 Centripetal force and bank angle 42 4.2.3 Rate of turn 44 4.2.4 Load factor 44 4.3 Resolution 46 4.4 Remark 51 CHAPTER V 52 SIMULATION 52 5.1 TCAS flow chart 52 5.1.1 Advisory range definition 52 5.1.2 TCAS flow chart 53 5.2 Case I 57 5.3 Case II: turn right 60 5.4 Case III: Turn left 62 5.5 Case IV 64 5.6 Remark 66 CHAPTER VI 67 CONCLUSION 67 REFERENCES 69

    [1]Federal Aviation Administration, “Introduction to TCAS II Version 7.1”, U. S. Department of Transportation, February 28 2011.
    [2]W. P. Cleveland, E. S. Fleming, G. Lee, “TCAS Traffic Display Redesign”, Proceedings of the 2011 IEEE Systems and Information Engineering Design Symposium, April 29, 2011.
    [3]C. E. Lin, C. C. Li, S. F Tai, S. C Chiang, T. C. Chen, “Collision Avoidance System foe low Altitude Flight”, Journal of Aeronautics, Astronautics and Aviation, Series A, Vo1 41, No. 3, September 2009, pp. 143-156.
    [4]C. E. Lin, Y. Y. Wu, “TCAS Solution for Low Altitude Flights”, Navigation and Surveillance (ICNS) Conference, May 11-13, 2010.
    [5]R. Chamlou, “Design Principles and Algorithm Development for Two Type of Nextgen Airborne Conflict Detection and Collision Avoidance”, Integrated Communications Navigation and Surveillance (ICNS) Conference, May 11-13, 2010.
    [6]L. Peng, Y. Lin, “Study on the Model for Horizontal Escape Maneuvers in TCAS”, IEEE Transactions on Intelligent Transportation Systems, 2010, Vol. 11, NO. 2.
    [7]G. Xiao, Y. Xu, C. Dai, Z. Jing, “A Selection Algorithm for Conflict Aircraft and Performance Analysis base on ADS-B”, 30th Digital Avionics System Conference, October 16-20, 2011
    [8]B. M. Albaker, N. A. Rahim, “Unmanned Aircraft Collision Detection and Resolution: Concept and Survey”, 5th IEEE Conference on Industrial Electronics and Applications, 2010.
    [9]S. C. Hung, C. E. Lin, “Real Time Conflict Detection for Helicopter Collision Avoidance”, Trans. on the Aeronautical and Astronautical Society of the R. O. China, AASRC, Vol. 35, No. 3, September 2003, pp. 235-239.
    [10]C. E. Lin, S. C. Hung, “Verification of Real Time Collision Avoidance for Helicopters”, AIAA Guidance, Navigation and Control Conference, August 5-8, 2002, Monterey, CA.
    [11]W. H. Harman, J. D. Welch, M. L. Wood, “Traffic Alert and Collision Avoidance System (TCAS) Surveillance Performance in Helicopters”, Project Report ATC-135, Lincoln Laboratory, May 8, 1987.
    [12]D. W. Burgess, S. I. Altman, M. L. Wood, “TCAS: Maneuvering Aircraft in the Horizontal Plane”, The Lincoln Laboratory Journal, Vol. 7, No. 2, 1994, pp.295-312.
    [13]J. K. Kuchar, A. C. Drumm, “The Traffic Alert and Collision Avoidance System” The Lincoln Laboratory Journal, Vol. 16, No. 2, 2007, pp. 277-295.
    [14]G. Cai, B. M. Chen, T. H. Lee, Unmanned Rotorcraft Systems, Springer, 2011, Ch. 2, pp. 23-30.
    [15]Department of Transport, Canada, “Helicopter Flight Training Manual” Tech. Paper 9882E, June, 2006.
    [16]Flight Learnings, Aerodynamic Factors. May 2013. Available in web: http://www.flightlearnings.com/2012/10/25/aerodynamics-in-turns/
    [17]S. Ueno, T. Higuchi, K. Iwama, “Collision Avoidance Control Law of a Helicopter using Information Amount Feedback”, SICE Annual Conference, August 20-22, 2008.

    下載圖示 校內:2015-08-21公開
    校外:2018-08-21公開
    QR CODE