| 研究生: |
陳偉棋 Chen, Wei-Chi |
|---|---|
| 論文名稱: |
以螢光單體製備分子模版共聚物對肌酸酐吸附之探討 Preparation of Molecularly Imprinted Copolymer from Fluorescent Monomer for the Binding of Creatinine |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 肌酸酐 、選擇性吸附 、螢光感測 、分子模版高分子 、分子辨識 、鋅原紫質 |
| 外文關鍵詞: | molecularly imprinted polymer, fluorescence measurement, specific adsorption, zinc(II) protoporphyrin, creatinine, molecular recognition |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
分子辨識 (Molecular recognition) 是臨床上免疫分析的基礎,使用生物抗體作為分子辨識元件具有優異的辨識效果,但是生物抗體的種種不穩定性造成分析上廣受限制。分子模版高分子 (molecularly imprinted polymer, MIP) 是一種擬生物抗體的方式,利用合成出對適當模版分子具有辨識能力的高分子進行分析。此方法是將模版分子與功能性單體溶於適當溶劑中,經由聚合產生穩定的複合物型態,最後以適當溶劑將模版分子洗出,便形成對模版分子具有優異親和力和構形相互補的辨識基座,此辨識基座即為分子模版高分子。
本研究以臨床上診斷腎臟疾病的重要指標分子,肌酸酐 (creatinine) 做為模版分子,使用鋅原紫質 (zinc(II) protoporphyrin) 與甲基丙烯酸 (methacrylic acid) 作為功能性單體,製備肌酸酐模版高分子。鋅原紫質具有 Lewis 酸鍵結位址,在模印過程中,肌酸酐模版分子可與鋅原紫質上的鋅原子產生可逆的配位鍵結。此外,鋅原紫質為一螢光單體,其激發波長為 423 nm,放射波長大約為 590 nm。
利用鋅原紫質與甲基丙烯酸共聚合製備之肌酸酐模版高分子在單一肌酸酐溶液之模印因子 (imprinting factor) 為 5.24 ± 0.02;在肌酸酐、肌酸 (creatine) (共存物)、N-羥基丁二醯亞氨(N-hydroxysuccinimide) (相似物) 及咯烷酮 (2-pyrrolidinone) (相似物) 共存之雙成份與三成份溶液進行選擇性吸附實驗,所得對肌酸酐最佳的選擇率 (selectivity ratio) 分別為 10.57 ± 2.43 與 3.39 ± 0.61。比較使用鋅原紫質與甲基丙烯酸共聚合、單一鋅原紫質聚合與單一甲基丙烯酸聚合而得之肌酸酐模版高分子,由實驗結果可知,使用鋅原紫質與甲基丙烯酸共聚合製備之肌酸酐模版高分子對肌酸酐具有較佳的辨識能力。以不同比例之鋅原紫質與甲基丙烯酸製備之模版高分子對肌酸酐之吸附為:降低鋅原紫質與甲基丙烯酸之含量製備而得之肌酸酐模版高分子對肌酸酐的選擇率並無提升;相同比例之鋅原紫質與甲基丙烯酸但提高聚合溫度製備而得之肌酸酐模版高分子對肌酸酐的吸附量增加,但是選擇率卻較不穩定。另外,使用鋅原紫質的螢光性質進行螢光感測,由實驗結果可知,鋅原紫質與甲基丙烯酸共聚合製備之肌酸酐模版高分子的螢光強度會隨著肌酸酐濃度增加而降低。
Molecular recognition between guest and host is the base of clinical immunoassay. To utilize biological element as molecular recognition unit possess good recognition efficiency, but it was restricted in assay environment by its unstable property. Molecularly imprinted polymer is an approach using artificial material as biomimetic antibody. Molecularly imprinted polymer is synthesized using functional monomers to copolymerize to cross-linking agent in the presence of template molecule. After the polymerization, the template molecule is washed out by proper solvent so that binding site possess specific affinity and complementary structure with template molecule was formed.
In this study, creatinine was chosen as the template molecule because of its importance as a clinical index for the kidney function. The functional monomers, zinc(II) protoporphyrin (ZnPP) and methacrylic acid (MAA) were used in polymerization. ZnPP having a Lewis acid binding site zinc, for the imprinting process the template molecule creatinine is reversibly coordinated to the zinc atom. And ZnPP is a fluorescent functional monomer, its excited wavelength is 423 nm and emission wavelength is around 590 nm.
Molecularly imprinted polymer which copolymerized using both ZnPP and MAA to recognize creatinine was named poly(ZnPP-co-MAA). From the experimental results of poly(ZnPP-co-MAA), the imprinting factor was 5.24 ± 0.02. Creatinine and other compounds, creatine, N-hydroxysuccinimide and 2-pyrrolidinone, were used to comprise mixture solutions for specific adsorption experiment. In the adsorption results from mixtures, the best selectivity ratio for creatinine by poly(ZnPP-co-MAA) in binary and ternary solutions were 10.57 ± 2.43 and 3.39 ± 0.61, respectively. In addition to poly(ZnPP-co-MAA), molecularly imprinted polymer polymerized using only ZnPP or MAA, named poly(ZnPP) and poly(MAA) as references. Comparison of there different polymer, poly(ZnPP-co-MAA) possess good imprinted effect and specificity was performed. From the results of using different ratio of ZnPP and MAA copolymerize in the same condition, decrease amount of ZnPP and MAA can not promote the selectivity ratio to creatinine; from the results of using the same ratio of ZnPP and MAA copolymerize in different condition, arise the polymeric temperature can increase the binding capacity but no obvious promotion to selectivity ratio. From the results of fluorescence measurement of poly(ZnPP-co-MAA), fluorescence intensity of the poly(ZnPP-co-MAA) decreased with creatinine concentration was achieved.
[1] A. P. F. Turner, B. Chen, S. A. Piletsky, In vitro diagnostics in
diabetes: meeting the challenge, Clin Chem, 45, 1596–601, 1999
[2] S. Dong, Q. Wang, Electrochemical biosensing in extreme environment,
Electroanal, 14(1), 7-16, 2002
[3] P. B. Luppa, L. J. Sokoll, D. W. Chan, Immunosensors-principles and
applications to clinical chemistry, Clin Chim Acta, 314, 1-26, 2001
[4] 藤島 昭, 相澤益男, 井上 徹, 電化學測定方法, 1984
[5] S. Koch, P. Woias, L. K. Meixner, S. Drost, H. Wolf, Protein detection
with a novel ISFET-based zeta potential analyzer, Biosens Bioelectron,
14, 413-421, 1999
[6] M. A. Lopez, F. Ortega, E. Dominguez, I. Katakis, Electrochemical
immunosensor for the detection of atrazine, J Mol Recognit, 11, 178-181,
1998
[7] K. Yagiuda, A. Hemmi, S. Ito, et al, Development of a conductivity-based
immunosensor for sensitive detection of methamphetamine (stimulant drug)
in human urine, Biosens Bioelectron, 11, 703-707, 1996
[8] D. A. Skoog, D.M. West, Principles of instrumental analysis, Holt,
Rinehart and Winston, New York, 1971
[9] C. Domenici, A. Schirone, M. Celebre, A. Ahluwalia, D. De Rossi,
Development of a TIRF immunosensor: modeling the equilibrium behavior of
a competitive system, Biosens Bioelectron, 10, 371-378, 1995
[10] B. Liedberg, C. Nylander, I. Lundstrom, Biosensing with surface
resonance-how it all started. Biosens Bioelectron, 10, i-ix, 1995
[11] K. A. Marx, Quartz crystal microbalance: A useful tool for studying thin
polymer films and complex biomolecular systems at the solution-surface
interface, Biomacromolecules, 4, 1100-1120, 2003
[12] D. Kriz, O. Ramstroem, A. Svensson, K. Mosbach, Introducing biomimetic
sensors based on molecularly imprinted polymers as recognition elements,
Anal Chem, 67, 2142, 1995
[13] N. Lavignac, C. J. Allender, K. R. Brain, Current status of molecularly
imprinted polymers as alternatives to antibodies in sorbent assays, Anal
Chim Acta, 510, 139-145, 2004
[14] L. Pauling, A theory of the structure and process of formation of
antibodies, J Am Chem Soc, 62, 2643-2657, 1940
[15] F. H. Dickey, the preparation of specific adsorbents, Proc Natl Acad Sci
USA, 35, 229-229, 1949
[16] T. Takagishi, I. M. Klotz, Macromolecule-small molecule interactions;
introduction of additional binding sites in polyethyleneimine by
disulfide cross-linkages, Biopolymers, 11, 483-491, 1972
[17] G. Wulff, A. Sarhan, Macromolecular Colloquium, Angew Chem Int Ed Engl,
11, 341, 1972
[18] R. Arshady, K. Mosbach, Synthesis of substrate-selective polymers by
host-guest polymerization, Markromol Chem, 182, 687-692, 1981
[19] K. Haupt, K. Mosbach, Molecularly imprinted polymers and their use in
biomimetic sensors, Chem Rev, 100, 2495-2504, 2000
[20] P. A.G. Cormack, A. Z. Elorza, Molecularly imprinted polymer: synthesis
and characterization, J Chromatogr B, 804, 173-182, 2004
[21] R. J. Ansell, D. Kriz, K. Mosbach, Molecularly imprinted polymers for
bioanalysis: chromatography, binding assays and biomimetic sensors, Curr
Opin Biotech, 7, 89-94, 1996
[22] J. Mathew-Krotz, K. J. Shea, Imprinted polymer membranes for the
selective transport of targeted neutral molecules, J Am Chem Soc, 118,
8154-8155, 1996
[23] X. Xu, L. Zhu, L. Chen, Separation and screening of compounds of
biological origin using molecularly imprinted polymers, J Chromatogr B,
804, 61-69, 2004
[24] B. Sellergren, Direct drug determination by selective sample enrichment
on an imprinted polymer, Anal Chem, 66, 1578, 1994
[25] J. Nilsson, P. Spégel, S. Nilsson, Molecularly imprinted polymer formats
for capillary electrochromatography, J Chromatogr B, 804, 3-12, 2004
[26] C. Malitesta, I. Losito, P. G. Zambonin, Molecularly imprinted
electrosynthesized polymers: new materials for biomimetic sensors, Anal
Chem, 71, 1366-1370, 1999
[27] W. B. Motherwell, M. J. Bingham, Y. Six, Recent progress in the design
and synthesis of artificial enzymes, Tetrahedron, 57, 4663-4686, 2001
[28] G. Vlatakis, L. I. Andersson, R. Muller, K. Mosbach, Drag assay using
antibody mimics made by molecular imprinting, Nature, 361, 645-647, 1993
[29] A. W. Czarnik, Supramolecular chemistry, fluorescence, and sensing,
Fluorescent chemosensors for ion and molecule recognition edit by A. W.
Czarnik, ACS, Washington, DC, 1992
[30] J. R. Lakowicz, Principles of fluorescence spectroscopy, Kluwer Academic
/ Plenum Publishers, New York, 1999
[31] H. A. Tsai, M. J. Syu, Synthesis of creatinine-imprinted
poly(b-cyclodextrin) for the specific binding of creatinine,
Biomaterials, 26, 2759-2766, 2005
[32] J. Liebig, Kreatin and kreatinin, Bestandtheile des Harns der Menschen, J
Prakt Chem, 40, p 288-292, 1847
[33] J. Horbaczewski, Nenu synthese des Kreatins, Weiner Med Jahrbűcher, 459,
1885
[34] W. Paulmann, Beiträge zur Kenntniss des Sarkosins, Arch Pharm, 232,
601-639, 1894
[35] P. B. Rehberg, Ueber die Bestimmung der menge des Glomerulusfiltrats
mittels Kreatinin als Nierenfunktionsprufung, nebst einigen Bemerkungen
űber die Theorien der Harnbereitung, Zentralbl Inn Med, 50, 367-377, 1929
[36] J. A. Shannon, Renal excretion of creatinine in man, J Clin Invest, 14,
403-410, 1935
[37] P. Hodgson, H. B. Lewis, Physical development and the excretion of
creatine and creatinine by women, Am J Physiol, 87, 288-292, 1929
[38] L. C. Clark, H. L. Thompson, E. I. Beck, W. Jacobson, Excretion of
creatine and creatinine by children, Am J Dis Child, 81, 774-783, 1951
[39] K. Bloch, R. Schoenheimer, Studies in protein metabolism. XI. The
metabolic relation of creatine and creatinine studied withisotopic
nitrogen, J Biol Chem, 131, 111-119, 1939
[40] H. Borsook, J. W. Dubnoff, The formation of creatine from glycocyamine in
the liver, J Biol Chem, 132, p 559-574, 1940
[41] V. duVigneaud, J. P. Chandler, M. Cohn, G. B. Brown, The transfer of the
methyl group from methionine to choline and creatine, J Biol Chem, 134,
787-788, 1940
[42] M. Wyss, R. Kaddurah-Daouk, Creatine and creatinine metabolism, Physiol
Rev, 80, 1107-1213, 2000
[43] G. F. Khan, W. Wernet, A high sensitive amperometric creatinine sensor,
Anal Chim Acta, 351, 151–158, 1997
[44] M. Jaffé, Űber den Niederschlag welchen Pikrinsaure in normalen Ham
erzeugt und űber eine neue Reaction des Kreatinins, Z Physiol Chem, 10,
391-400, 1886
[45] A. R. Butler, The Jaffé reaction. Identification of the coloured species,
Clin Chim Acta, 59, 227-232, 1975
[46] J. H. Shin, Y. S. Choi, H. J. Lee, S. H. Choi, J. Ha, I. J. Yoon, H. Nam,
G. S. Cha, A planar amperometric creatinine biosensor employing an
insoluble oxidizing agent for removing redox-active interferences, Anal
Chem, 73, 5965-5971, 2001
[47] A. P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, N.
Jaffrezic-Renault, Creatinine sensitive biosensor based on ISFETs and
creatinine deiminase immobilized in BSA membrane, Talanta, 58, 351-357,
2002
[48] K. Sreenivasan, R. Sivakumar, Interaction of molecularly imprinted
polymers with creatinine, J Appl Polym Sci, 66, 2539-2542, 1997
[49] S. Subrahmanyam, S. A. Piletsky, E. V. Piletska, B. Chen, K, Karim, A. P.
F. Turner, ‘Bite-and-Switch’ approach using computationally designed
molecularly imprinted polymers for sensing of creatinine, Biosens
Bioelectron, 16, 631–16637, 2001
[50] J. Matsui, M. Higashi, T. Takeuchi, Molecularly imprinted polymer as
9-ethyladenine receptor having a porphyrin-based recognition center, J Am
Chem Soc, 122, 5218-5219, 2000
[51] T. Takeuchi, T. Mukawa, J. Matsui, M. Higashi, K. D. Shimizu, Molecularly
imprinted polymers with metalloporphyrin-based molecular recognition
sites coassembled with methacrylic acid, Anal Chem, 73, 3869-3874, 2001
[52] A. Tong, H. Dong, L. Li, Molecular imprinting-based fluorescent
chemosensor for histamine using zinc(II)-protoporphyrin as a functional
monomer, Anal Chim Acta, 466, 31-37, 2002
[53] 陳威志, 利用微卡計所得資訊設計肌酸酐分子模版, 國立成功大學, 2004
[54] M. Subat, A. S. Borovik, B. König, Synthetic creatinine receptor:
imprinting of a Lewis acidic zinc(II)cyclen binding site to shape its
molecular recognition selectivity, J Am Chem Soc, 126, 3185-3190, 2004
校內:2027-06-01公開