簡易檢索 / 詳目顯示

研究生: 陳偉棋
Chen, Wei-Chi
論文名稱: 以螢光單體製備分子模版共聚物對肌酸酐吸附之探討
Preparation of Molecularly Imprinted Copolymer from Fluorescent Monomer for the Binding of Creatinine
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 90
中文關鍵詞: 肌酸酐選擇性吸附螢光感測分子模版高分子分子辨識鋅原紫質
外文關鍵詞: molecularly imprinted polymer, fluorescence measurement, specific adsorption, zinc(II) protoporphyrin, creatinine, molecular recognition
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   分子辨識 (Molecular recognition) 是臨床上免疫分析的基礎,使用生物抗體作為分子辨識元件具有優異的辨識效果,但是生物抗體的種種不穩定性造成分析上廣受限制。分子模版高分子 (molecularly imprinted polymer, MIP) 是一種擬生物抗體的方式,利用合成出對適當模版分子具有辨識能力的高分子進行分析。此方法是將模版分子與功能性單體溶於適當溶劑中,經由聚合產生穩定的複合物型態,最後以適當溶劑將模版分子洗出,便形成對模版分子具有優異親和力和構形相互補的辨識基座,此辨識基座即為分子模版高分子。
      本研究以臨床上診斷腎臟疾病的重要指標分子,肌酸酐 (creatinine) 做為模版分子,使用鋅原紫質 (zinc(II) protoporphyrin) 與甲基丙烯酸 (methacrylic acid) 作為功能性單體,製備肌酸酐模版高分子。鋅原紫質具有 Lewis 酸鍵結位址,在模印過程中,肌酸酐模版分子可與鋅原紫質上的鋅原子產生可逆的配位鍵結。此外,鋅原紫質為一螢光單體,其激發波長為 423 nm,放射波長大約為 590 nm。
      利用鋅原紫質與甲基丙烯酸共聚合製備之肌酸酐模版高分子在單一肌酸酐溶液之模印因子 (imprinting factor) 為 5.24 ± 0.02;在肌酸酐、肌酸 (creatine) (共存物)、N-羥基丁二醯亞氨(N-hydroxysuccinimide) (相似物) 及咯烷酮 (2-pyrrolidinone) (相似物) 共存之雙成份與三成份溶液進行選擇性吸附實驗,所得對肌酸酐最佳的選擇率 (selectivity ratio) 分別為 10.57 ± 2.43 與 3.39 ± 0.61。比較使用鋅原紫質與甲基丙烯酸共聚合、單一鋅原紫質聚合與單一甲基丙烯酸聚合而得之肌酸酐模版高分子,由實驗結果可知,使用鋅原紫質與甲基丙烯酸共聚合製備之肌酸酐模版高分子對肌酸酐具有較佳的辨識能力。以不同比例之鋅原紫質與甲基丙烯酸製備之模版高分子對肌酸酐之吸附為:降低鋅原紫質與甲基丙烯酸之含量製備而得之肌酸酐模版高分子對肌酸酐的選擇率並無提升;相同比例之鋅原紫質與甲基丙烯酸但提高聚合溫度製備而得之肌酸酐模版高分子對肌酸酐的吸附量增加,但是選擇率卻較不穩定。另外,使用鋅原紫質的螢光性質進行螢光感測,由實驗結果可知,鋅原紫質與甲基丙烯酸共聚合製備之肌酸酐模版高分子的螢光強度會隨著肌酸酐濃度增加而降低。

     Molecular recognition between guest and host is the base of clinical immunoassay. To utilize biological element as molecular recognition unit possess good recognition efficiency, but it was restricted in assay environment by its unstable property. Molecularly imprinted polymer is an approach using artificial material as biomimetic antibody. Molecularly imprinted polymer is synthesized using functional monomers to copolymerize to cross-linking agent in the presence of template molecule. After the polymerization, the template molecule is washed out by proper solvent so that binding site possess specific affinity and complementary structure with template molecule was formed.
     In this study, creatinine was chosen as the template molecule because of its importance as a clinical index for the kidney function. The functional monomers, zinc(II) protoporphyrin (ZnPP) and methacrylic acid (MAA) were used in polymerization. ZnPP having a Lewis acid binding site zinc, for the imprinting process the template molecule creatinine is reversibly coordinated to the zinc atom. And ZnPP is a fluorescent functional monomer, its excited wavelength is 423 nm and emission wavelength is around 590 nm.
     Molecularly imprinted polymer which copolymerized using both ZnPP and MAA to recognize creatinine was named poly(ZnPP-co-MAA). From the experimental results of poly(ZnPP-co-MAA), the imprinting factor was 5.24 ± 0.02. Creatinine and other compounds, creatine, N-hydroxysuccinimide and 2-pyrrolidinone, were used to comprise mixture solutions for specific adsorption experiment. In the adsorption results from mixtures, the best selectivity ratio for creatinine by poly(ZnPP-co-MAA) in binary and ternary solutions were 10.57 ± 2.43 and 3.39 ± 0.61, respectively. In addition to poly(ZnPP-co-MAA), molecularly imprinted polymer polymerized using only ZnPP or MAA, named poly(ZnPP) and poly(MAA) as references. Comparison of there different polymer, poly(ZnPP-co-MAA) possess good imprinted effect and specificity was performed. From the results of using different ratio of ZnPP and MAA copolymerize in the same condition, decrease amount of ZnPP and MAA can not promote the selectivity ratio to creatinine; from the results of using the same ratio of ZnPP and MAA copolymerize in different condition, arise the polymeric temperature can increase the binding capacity but no obvious promotion to selectivity ratio. From the results of fluorescence measurement of poly(ZnPP-co-MAA), fluorescence intensity of the poly(ZnPP-co-MAA) decreased with creatinine concentration was achieved.

    第一章 緒論 1 1-1 生物感測器 (Biosensors) 1 1-1-1 感測器的組成 1 1-1-2 生物感測器的類型 2 1-1-3 生物感測器設計 2 1-2 分子模版高分子 (Molecularly imprinted polymer, MIP) 7 1-2-1 分子模版高分子之發展沿革 8 1-2-2 分子模版的基本原理 9 1-2-3 分子間的辨識機制 10 1-2-4 分子模版高分子的製備 13 1-2-4-1 模版分子 (template) 14 1-2-4-2 功能性單體 (functional monomers) 14 1-2-4-3 交聯劑 (cross-linker) 14 1-2-4-4 溶劑 (solvent) 15 1-2-4-5 起始劑 (initiator) 15 1-2-6 分子模版高分子與螢光感測 18 1-3 螢光感測 18 1-3-1 螢光的發展沿革 19 1-3-2 螢光基本原理 19 1-3-3 影響螢光之變數 21 1-4 肌酸酐 (creatinine, Crn) 23 1-4-1 肌酸酐之歷史發展 23 1-4-2 肌酸酐的腎臟排泄 23 1-4-3 肌酸酐的來源與腎臟疾病 24 1-4-4 肌酸酐的分析方法 26 1-5 實驗動機與目的 27 第二章 實驗方法與材料 28 2-1 肌酸酐的測定 28 2-1-1 肌酸酐以 HPLC 定量及檢量線 28 2-2 肌酸酐模版高分子的製備 30 2-2-1 Poly(ZnPP-co-MAA) 顆粒之製備 30 2-2-2 Poly(MAA) 顆粒之製備 30 2-2-3 Poly(ZnPP) 顆粒之製備 31 2-3 肌酸酐模版高分子的脫附 33 2-4 肌酸酐模版高分子的吸附 33 2-5 肌酸酐與相似物的定量測定與檢量線 33 2-5-1 肌酸酐模版高分子在雙成份溶液中的吸附 33 2-5-2 肌酸酐模版高分子在三成份溶液中的吸附 34 2-6 以螢光光譜儀進行肌酸酐模版高分子顆粒的感測 41 2-6-1 肌酸酐模版高分子感測肌酸酐與其相似物之螢光感測 41 2-6-2 肌酸酐吸附螢光檢測實驗 41 2-6-3 肌酸吸附螢光檢測實驗 41 2-7 實驗藥品 42 2-8 實驗儀器 43 第三章 結果與討論 44 3-1 使用 Zinc protoporphyrin 單體製備肌酸酐模版高分子 44 3-2 肌酸酐模版高分子之特性 46 3-2-1 肌酸酐模版高分子之辨識行為 46 3-2-2 肌酸酐模版高分子之 SEM 圖 47 3-2-3 肌酸酐模版高分子之 FT-IR 48 3-3 肌酸酐模版高分子與無模版高分子吸附肌酸酐之比較 51 3-4 肌酸酐模版高分子於多成份系統下之選擇性實驗 53 3-4-1 多成份系統組成之簡介 53 3-4-2 肌酸酐模版高分子於雙成份溶液中之選擇性吸附實驗 55 3-4-3 肌酸酐模版高分子於三成份溶液中之選擇性吸附實驗 56 3-5 比較以不同單體製備之肌酸酐模版高分子的辨識能力 60 3-5-1 模版鋅原紫質甲基丙烯酸共聚物、模版鋅原紫質聚合物與模版甲基丙烯酸聚合物之 SEM 圖 60 3-5-2 Poly(ZnPP-co-MAA)、poly(ZnPP) 與poly(MAA) 三種模版高分子對肌酸酐辨識能力之比較 63 3-5-3 Poly(ZnPP-co-MAA)、poly(ZnPP) 與poly(MAA) 於雙成份溶 液中之特異選擇性 65 3-6 比較不同比例與溫度製備之 poly(ZnPP-co-MAA) 69 3-6-1 肌酸酐模版高分子與無模版高分子辨識能力之比較 69 3-6-2 肌酸酐模版高分子在雙成份溶液中模版辨識能力之比較 72 3-7 肌酸酐模版高分子之螢光量測 75 3-7-1 肌酸酐模版高分子於肌酸酐與其相似物與共存物溶液中之螢光訊號 75 3-7-2 肌酸酐模版高分子於不同肌酸酐濃度下之螢光訊號 76 3-7-3 比較肌酸酐模版高分子於不同肌酸/肌酸酐濃度下之螢光訊號 76 第四章 結論 84 參考文獻 86

    [1] A. P. F. Turner, B. Chen, S. A. Piletsky, In vitro diagnostics in
    diabetes: meeting the challenge, Clin Chem, 45, 1596–601, 1999
    [2] S. Dong, Q. Wang, Electrochemical biosensing in extreme environment,
    Electroanal, 14(1), 7-16, 2002
    [3] P. B. Luppa, L. J. Sokoll, D. W. Chan, Immunosensors-principles and
    applications to clinical chemistry, Clin Chim Acta, 314, 1-26, 2001
    [4] 藤島 昭, 相澤益男, 井上 徹, 電化學測定方法, 1984
    [5] S. Koch, P. Woias, L. K. Meixner, S. Drost, H. Wolf, Protein detection
    with a novel ISFET-based zeta potential analyzer, Biosens Bioelectron,
    14, 413-421, 1999
    [6] M. A. Lopez, F. Ortega, E. Dominguez, I. Katakis, Electrochemical
    immunosensor for the detection of atrazine, J Mol Recognit, 11, 178-181,
    1998
    [7] K. Yagiuda, A. Hemmi, S. Ito, et al, Development of a conductivity-based
    immunosensor for sensitive detection of methamphetamine (stimulant drug)
    in human urine, Biosens Bioelectron, 11, 703-707, 1996
    [8] D. A. Skoog, D.M. West, Principles of instrumental analysis, Holt,
    Rinehart and Winston, New York, 1971
    [9] C. Domenici, A. Schirone, M. Celebre, A. Ahluwalia, D. De Rossi,
    Development of a TIRF immunosensor: modeling the equilibrium behavior of
    a competitive system, Biosens Bioelectron, 10, 371-378, 1995
    [10] B. Liedberg, C. Nylander, I. Lundstrom, Biosensing with surface
    resonance-how it all started. Biosens Bioelectron, 10, i-ix, 1995
    [11] K. A. Marx, Quartz crystal microbalance: A useful tool for studying thin
    polymer films and complex biomolecular systems at the solution-surface
    interface, Biomacromolecules, 4, 1100-1120, 2003
    [12] D. Kriz, O. Ramstroem, A. Svensson, K. Mosbach, Introducing biomimetic
    sensors based on molecularly imprinted polymers as recognition elements,
    Anal Chem, 67, 2142, 1995
    [13] N. Lavignac, C. J. Allender, K. R. Brain, Current status of molecularly
    imprinted polymers as alternatives to antibodies in sorbent assays, Anal
    Chim Acta, 510, 139-145, 2004
    [14] L. Pauling, A theory of the structure and process of formation of
    antibodies, J Am Chem Soc, 62, 2643-2657, 1940
    [15] F. H. Dickey, the preparation of specific adsorbents, Proc Natl Acad Sci
    USA, 35, 229-229, 1949
    [16] T. Takagishi, I. M. Klotz, Macromolecule-small molecule interactions;
    introduction of additional binding sites in polyethyleneimine by
    disulfide cross-linkages, Biopolymers, 11, 483-491, 1972
    [17] G. Wulff, A. Sarhan, Macromolecular Colloquium, Angew Chem Int Ed Engl,
    11, 341, 1972
    [18] R. Arshady, K. Mosbach, Synthesis of substrate-selective polymers by
    host-guest polymerization, Markromol Chem, 182, 687-692, 1981
    [19] K. Haupt, K. Mosbach, Molecularly imprinted polymers and their use in
    biomimetic sensors, Chem Rev, 100, 2495-2504, 2000
    [20] P. A.G. Cormack, A. Z. Elorza, Molecularly imprinted polymer: synthesis
    and characterization, J Chromatogr B, 804, 173-182, 2004
    [21] R. J. Ansell, D. Kriz, K. Mosbach, Molecularly imprinted polymers for
    bioanalysis: chromatography, binding assays and biomimetic sensors, Curr
    Opin Biotech, 7, 89-94, 1996
    [22] J. Mathew-Krotz, K. J. Shea, Imprinted polymer membranes for the
    selective transport of targeted neutral molecules, J Am Chem Soc, 118,
    8154-8155, 1996
    [23] X. Xu, L. Zhu, L. Chen, Separation and screening of compounds of
    biological origin using molecularly imprinted polymers, J Chromatogr B,
    804, 61-69, 2004
    [24] B. Sellergren, Direct drug determination by selective sample enrichment
    on an imprinted polymer, Anal Chem, 66, 1578, 1994
    [25] J. Nilsson, P. Spégel, S. Nilsson, Molecularly imprinted polymer formats
    for capillary electrochromatography, J Chromatogr B, 804, 3-12, 2004
    [26] C. Malitesta, I. Losito, P. G. Zambonin, Molecularly imprinted
    electrosynthesized polymers: new materials for biomimetic sensors, Anal
    Chem, 71, 1366-1370, 1999
    [27] W. B. Motherwell, M. J. Bingham, Y. Six, Recent progress in the design
    and synthesis of artificial enzymes, Tetrahedron, 57, 4663-4686, 2001
    [28] G. Vlatakis, L. I. Andersson, R. Muller, K. Mosbach, Drag assay using
    antibody mimics made by molecular imprinting, Nature, 361, 645-647, 1993
    [29] A. W. Czarnik, Supramolecular chemistry, fluorescence, and sensing,
    Fluorescent chemosensors for ion and molecule recognition edit by A. W.
    Czarnik, ACS, Washington, DC, 1992
    [30] J. R. Lakowicz, Principles of fluorescence spectroscopy, Kluwer Academic
    / Plenum Publishers, New York, 1999
    [31] H. A. Tsai, M. J. Syu, Synthesis of creatinine-imprinted
    poly(b-cyclodextrin) for the specific binding of creatinine,
    Biomaterials, 26, 2759-2766, 2005
    [32] J. Liebig, Kreatin and kreatinin, Bestandtheile des Harns der Menschen, J
    Prakt Chem, 40, p 288-292, 1847
    [33] J. Horbaczewski, Nenu synthese des Kreatins, Weiner Med Jahrbűcher, 459,
    1885
    [34] W. Paulmann, Beiträge zur Kenntniss des Sarkosins, Arch Pharm, 232,
    601-639, 1894
    [35] P. B. Rehberg, Ueber die Bestimmung der menge des Glomerulusfiltrats
    mittels Kreatinin als Nierenfunktionsprufung, nebst einigen Bemerkungen
    űber die Theorien der Harnbereitung, Zentralbl Inn Med, 50, 367-377, 1929
    [36] J. A. Shannon, Renal excretion of creatinine in man, J Clin Invest, 14,
    403-410, 1935
    [37] P. Hodgson, H. B. Lewis, Physical development and the excretion of
    creatine and creatinine by women, Am J Physiol, 87, 288-292, 1929
    [38] L. C. Clark, H. L. Thompson, E. I. Beck, W. Jacobson, Excretion of
    creatine and creatinine by children, Am J Dis Child, 81, 774-783, 1951
    [39] K. Bloch, R. Schoenheimer, Studies in protein metabolism. XI. The
    metabolic relation of creatine and creatinine studied withisotopic
    nitrogen, J Biol Chem, 131, 111-119, 1939
    [40] H. Borsook, J. W. Dubnoff, The formation of creatine from glycocyamine in
    the liver, J Biol Chem, 132, p 559-574, 1940
    [41] V. duVigneaud, J. P. Chandler, M. Cohn, G. B. Brown, The transfer of the
    methyl group from methionine to choline and creatine, J Biol Chem, 134,
    787-788, 1940
    [42] M. Wyss, R. Kaddurah-Daouk, Creatine and creatinine metabolism, Physiol
    Rev, 80, 1107-1213, 2000
    [43] G. F. Khan, W. Wernet, A high sensitive amperometric creatinine sensor,
    Anal Chim Acta, 351, 151–158, 1997
    [44] M. Jaffé, Űber den Niederschlag welchen Pikrinsaure in normalen Ham
    erzeugt und űber eine neue Reaction des Kreatinins, Z Physiol Chem, 10,
    391-400, 1886
    [45] A. R. Butler, The Jaffé reaction. Identification of the coloured species,
    Clin Chim Acta, 59, 227-232, 1975
    [46] J. H. Shin, Y. S. Choi, H. J. Lee, S. H. Choi, J. Ha, I. J. Yoon, H. Nam,
    G. S. Cha, A planar amperometric creatinine biosensor employing an
    insoluble oxidizing agent for removing redox-active interferences, Anal
    Chem, 73, 5965-5971, 2001
    [47] A. P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, N.
    Jaffrezic-Renault, Creatinine sensitive biosensor based on ISFETs and
    creatinine deiminase immobilized in BSA membrane, Talanta, 58, 351-357,
    2002
    [48] K. Sreenivasan, R. Sivakumar, Interaction of molecularly imprinted
    polymers with creatinine, J Appl Polym Sci, 66, 2539-2542, 1997
    [49] S. Subrahmanyam, S. A. Piletsky, E. V. Piletska, B. Chen, K, Karim, A. P.
    F. Turner, ‘Bite-and-Switch’ approach using computationally designed
    molecularly imprinted polymers for sensing of creatinine, Biosens
    Bioelectron, 16, 631–16637, 2001
    [50] J. Matsui, M. Higashi, T. Takeuchi, Molecularly imprinted polymer as
    9-ethyladenine receptor having a porphyrin-based recognition center, J Am
    Chem Soc, 122, 5218-5219, 2000
    [51] T. Takeuchi, T. Mukawa, J. Matsui, M. Higashi, K. D. Shimizu, Molecularly
    imprinted polymers with metalloporphyrin-based molecular recognition
    sites coassembled with methacrylic acid, Anal Chem, 73, 3869-3874, 2001
    [52] A. Tong, H. Dong, L. Li, Molecular imprinting-based fluorescent
    chemosensor for histamine using zinc(II)-protoporphyrin as a functional
    monomer, Anal Chim Acta, 466, 31-37, 2002
    [53] 陳威志, 利用微卡計所得資訊設計肌酸酐分子模版, 國立成功大學, 2004
    [54] M. Subat, A. S. Borovik, B. König, Synthetic creatinine receptor:
    imprinting of a Lewis acidic zinc(II)cyclen binding site to shape its
    molecular recognition selectivity, J Am Chem Soc, 126, 3185-3190, 2004

    無法下載圖示 校內:2027-06-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE