| 研究生: |
陳振榕 Chen, Jhen-Rong |
|---|---|
| 論文名稱: |
純鈦與Ti-6Al-4V合金於水溶液及離子液體中之腐蝕行為研究 Corrosion Behavior of Pure Titanium and Ti-6Al-4V Alloy in Aqueous Solutions and Ionic Liquids |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 商業級純鈦 、Ti-6Al-4V 、電化學原子力顯微鏡 、離子液體 、優選腐蝕 |
| 外文關鍵詞: | commercial pure Ti, Ti-6Al-4V, electrochemical atomic force microscope, ionic liquid, preferential dissolution |
| 相關次數: | 點閱:90 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討Ti-6Al-4V雙相鈦合金在水溶液及離子液體環境中之優選腐蝕行為。在水溶液環境方面,以電化學原子力顯微鏡(electrochemical atomic force microscope, ECAFM),對微觀組織受不同熱處理條件改變之Ti-6Al-4V合金,於0.5 M H2SO4 + 1 M HCl還原性混酸水溶液中,進行原位腐蝕觀測,以了解其腐蝕行為與機制。而鈦金屬在離子液體環境中之腐蝕或鈍化行為,至今仍未有充分的研究探討,且離子液體之組合種類繁多,為簡化其腐蝕或鈍化行為機制之探討,先以商業級純鈦為對象,於四種型態之離子液體,分別為正-丁基-正-甲基呋喃二氰胺(N-butyl-N-methylpyrrolidinium dicyanamide, BMP-DCA)、氯化膽鹼-尿素(ChCl-urea)、氯化膽鹼-氯化鋅(choline chloride - chlorozincate, ChCl-ZnCl2)及氯化鋁-氯化-1-乙基-3-甲基咪唑(chloroaluminate-1-ethyl-3-methylimidazolium chloride, AlCl3-EMIC)等,進行電化學性質測試,以對鈦金屬在離子液體系統之腐蝕及鈍化性質有基礎的了解,再對腐蝕行為有特殊影響之離子液體為對象,以Ti-6Al-4V雙相鈦合金進行優選腐蝕行為探討。
微觀組織改變對Ti-6Al-4V合金腐蝕行為影響方面,固溶處理後爐冷之Ti-6Al-4V合金,因其主要組成相(α、β相)之化學成分差異較大,使其在0.5 M H2SO4 + 1 M HCl還原性混酸水溶液中,可觀測到α相優先溶解之腐蝕行為,且在α/β相界處亦因加凡尼效應的作用,α、β相腐蝕速率不同的現象更為顯著;反之,以空冷處理之Ti-6Al-4V合金,其兩相化學組成差異較小,兩相上所形成之鈍化膜化學成分及元素分布相近,故優選腐蝕及加凡尼效應不易發生。而電位對Ti-6Al-4V合金之腐蝕行為影響方面,發現爐冷處理之Ti-6Al-4V合金在開路狀況下,浸漬一段時間後,發生電位自-0.5 VPt驟降至-0.9 VPt之現象,並發生顯著的α相溶解。而在定電位原位腐蝕觀測,僅於-0.9 VPt下發生α相優先腐蝕,而高於-0.9 VPt時並無顯著的腐蝕現象發生。空冷處理之Ti-6Al-4V合金亦僅在-0.9VPt下發生顯著的腐蝕現象,但α、β兩相均有溶解現象,顯示兩相化學組成的差異不致造成優選腐蝕發生。
純鈦在離子液體中之腐蝕或鈍化行為方面,由動電位極化測試發現純鈦在陰陽離子皆為有機分子構成(如BMP-DCA、ChCl-urea),或空氣中可穩定存在之路以士酸性離子液體(如ChCl-ZnCl2)中仍可鈍化,而在空氣中無法穩定存在之EMIC-AlCl3離子液體中則沒有鈍化行為。以XPS分析商業級純鈦表面於BMP-DCA、ChCl-urea及ChCl-ZnCl2離子液體中形成之鈍化層,發現除TiN外尚有含氮分子之吸附並發生反應形成氮化物,而造成鈦的鈍化,此與吾人習知之鈦在腐蝕環境中的鈍化行為迥異。
由於鈦在EMIC-AlCl3離子液體系統中,腐蝕現象較顯著,故以Ti-6Al-4V合金於此離子液體系統中之優選腐蝕行為進行研究。在EMIC-AlCl3離子液體系統之陰離子對Ti-6Al-4V合金之侵蝕性由高至低依序為Al2Cl7->AlCl4- + Cl->AlCl4-。且Ti-6Al-4V合金不論於鹼性、中性或酸性之EMIC-AlCl3離子液體中,表面無法重新鈍化,而會隨著電位上升發生顯著的陽極溶解反應。本研究發現,酸性EMIC-AlCl3離子液體之Al2Cl7-可引發Ti-6Al-4V合金α相之優先溶解,而中性EMIC-AlCl3中之AlCl4-可引起β相之優先溶解,且隨蝕刻之電位提高,溶解速率之差異亦隨之提高。
Selective dissolution behavior of Ti-6Al-4V alloy in aqueous solution and ionic liquids (ILs) were investigated in this study. Selective dissolution of the Ti-6Al-4V alloy in aqueous solution was investigated by means of conducting in-situ corrosion monitoring experiment in 0.5 M H2SO4 + 1 M HCl mixed reducing acid by using electrochemical atomic force microscope (ECAFM). On the other hand, the corrosion behavior of Ti metal in ILs was first focused on the electrochemical behaviors of commercial pure Ti in four different kinds of ILs, namely N-butyl-N-methylpyrrolidinium dicyanamide (BMP-DCA), choline chloride-urea (ChCl-urea), choline chloride-chlorozincate (ChCl-ZnCl2), and 1-ethyl-3-methylimidazolium chloride aluminum chloride (EMIC-AlCl3) for the reason of simplification of the study of the corrosion or passivation mechanism.
For solution annealed followed by furnace-cooled Ti-6Al-4V titanium alloy, selective dissolution of α phase and non-uniform corrosion at α/β interface caused by galvanic effect resulted from significant chemical composition divergence was clearly observed. However, no selective dissolution was found in the air-cooled alloy due to the similarity in chemical composition of the passive film formed on α and β phases with less compositional divergence. The effect of potential on the corrosion behavior was also explored. Selective dissolution of α phase with respect to β phase occurred when the potential was controlled at -0.9 VPt. However, for the air-cooling treated Ti-6Al-4V alloy, also considerable dissolution was also found during potentiostatic etching at -0.9 VPt, but no selective dissolution behavior was observed due to less compositional divergence of α and β phases.
The potentiodynamic polarization measurement results show that CP Ti could be passivated in BMP-DCA, ChCl-urea and ChCl-ZnCl2 ILs. However, in EMIC-AlCl3 ionic liquid, the polarization curve only exhibited active dissolution behavior, without the presence of a passive region. The passivation behavior of CP Ti in ILs was also characterized by means of X-ray photoelectron spectroscopy (XPS) to examine the roles of ILs with different chemical structures. However, XPS analyses revealed that the passive films formed in BMP-DCA, ChCl-urea and ChCl-ZnCl2 ILs consisted as least two layers. Beside an IL-adsorbed surface layer, nitrogen-containing compounds (including titanium nitrides) were formed in the inner layer of the passive films, which were responsible for passivation providing effective corrosion resistance for CP Ti.
Electrochemical behavior and selective dissolution of Ti-6Al-4V alloy in 1-ethyl-3-methylimidazolium chloride aluminum chloride (EMIC-AlCl3) ionic liquid (IL) system where the composition ranged from Lewis base to acid was investigated. The results show that Ti-6Al-4V alloy has the highest corrosion susceptibility when heptachlorodialuminate ion (Al2Cl7-) was the anion in IL. Selective dissolution of Ti-6Al-4V alloy was found when Al2Cl7- presented in EMIC-AlCl3 IL while AlCl4- resulted in β phase preferential dissolution.
參考文獻
[1] William F. Smith. in: “Structure and Properties of Engineering Alloys.” (McGraw-Hill, New York, c1981) pp. 433–471.
[2] M.T. Jovanovic, S. Tadic, S. Zec, Z. Misˇkovic, I. Bobic, “The Effect of Annealing Temperatures and Cooling Rates on Microstructure and Mechanical Properties of Investment Cast Ti-6Al-4V Alloy”, Materials and Design, Vol. 27, pp. 192-199, (2006).
[3] M. Metikoš-Huković, A. Kwokal, J. Piljac, “The Influence of Niobium and Vanadium on Passivity of Titanium-Based Implants in Physiological Solution”, Biomaterials, Vol. 24, pp. 3765-3775, (2003).
[4] C. Y. Chih, J. R. Chen, W. T. Tsai, “Selective Dissolution of Ti-6Al-4V Titanium Alloy in Mixed HCl + H2SO4 Solution”, Corrosion/2009 NACE, 2009, paper #09515.
[5] I. Milošev, M. Metikoš-Huković, H.-H. Strehblow, “Passive Film on Orthopaedic TiAlV Alloy Formed in Physiological Solution Investigated by X-ray Photoelectron Spectroscopy”, Biomaterials, Vol. 21, pp. 2103-2113, (2000).
[6] C.L. Zeng, J. Li, T. Zhou, “Galvanic Corrosion in Molten Salts: A Discussion of the Corrosion Mechanism of Two-Phase Ni–20Cr–20/30Cu Alloys in Eutectic (Li,K)2CO3 at 650◦C”, Oxidation of Metals, Vol. 64, Nos. 3/4, October 2005.
[7] Y. Cui, Carl D. Lundin, “Austenite-preferential Corrosion Attack in 316 Austenitic Stainless Steel Weld Metals”, Materials and Design, Vol. 28, pp. 324-328, (2007).
[8] Wen-Ta Tsai, Kuen-Ming Tsai, and Chang-jian Lin, “Selective Corrosion in Duplex Stainless Steel”, Corrosion/2003 NACE (2003) paper #03398.
[9] I-Hsuang Lo, Fu Yan, Chang-Jian Lin, and Wen-Ta Tsai, “Effect of Electrolyte Composition on the Active-to-Passive Transition Behavior of 2205 Duplex Stainless Steel in H2SO4/HCl Solutions”, Corrosion Science, Vol. 48, pp. 696-708, (2006).
[10] M. Femenia, J. Pan, C. Leygraf and P. Luukkonen, “In Situ Study of Selective Dissolution of Duplex Stainless Steel 2205 by Electrochemical Scanning Tunnelling Microscopy”, Corrosion Science, Volume 43, Issue 10, pp. 1939-1951, (2001).
[11] Wen-Ta Tsai and Jhen-Rong Chen, “Galvanic Corrosion between the Constituent Phases in Duplex Stainless Steel”, Corrosion Science, Vol. 49, pp. 3659-3668, (2007).
[12] H. Sakaebe, H. Matsumoto, K. Tatsumi, “Application of Room Temperature Ionic Liquids to Li Batteries”, Electrochimica Acta, Vol. 53, pp. 1048-1054, (2007).
[13] R. Bomparola, S. Caporali, A. Lavacchi, U. Bardi, “Silver Electrodeposition from Air and Water-Stable Ionic Liquid:
An Environmentally Friendly Alternative to Cyanide Baths”, Surface & Coatings Technology, Vol. 201, pp. 9485-9490, (2007).
[14] Q. Zhu, Y. Song, X. Zhu, X. L. Wang, “Ionic Liquid-Based Electrolytes for Capacitor Applications”, Journal of Electroanalytical Chemistry, Vol. 601, pp. 229-236, (2007).
[15] J.A. Whitehead, J. Zhang, N. Pereira, A. McCluskey, G. A. Lawrance, “Application of 1-alkyl-3-methyl-imidazolium Ionic Liquids in the
Oxidative Leaching of Sulphidic Copper, Gold and Silver Ores”, Hydrometallurgy, Vol. 88, pp. 109-120, (2007).
[16] D. Zhao, M. Wu, Y. Kou, E. Min, “Ionic Liquids: Applications in Catalysis”, Catalysis Today, Vol. 74, pp. 157-189, (2002).
[17] S. Keskin, D. K. Talay, U. Akman, Ö. Hortaçsu, “A Review of Ionic Liquids towards Supercritical Fluid Applications”, The Journal of Supercritical Fluids, Vol. 43, pp. 150-180, (2007).
[18] S. A. Forsyth, J. M. Pringle, D. R. MacFarlane, “Ionic Liquids-An Overview”, Australian Journal of Chemistry, Vol. 57, pp. 113-119, (2004).
[19] P. Wasserscheid, T. Welton (Eds.), Ionic Liquids in Synthesis, Wiley-VCH, 2002.
[20] G. Sanderson, J. C. Scully, “The Stress Corrosion of Ti Alloys in Methanolic Solutions”, Corrosion Science, 8 (1968) 541-548.
[21] M. Levy, D. W. Seitz, Jr., “Stress Corrosion of Ti-8Al-1Mo-1V in Methanol + HCl Solutions”, Corrosion Science, 9 (1969) 341-351.
[22] A. Cerquetti, F. Mazza, “Electrochemical Behavior and Stress Corrosion Cracking of Titanium in Alcoholic Solutions”, Corrosion Science, 13 (1973) 337-349.
[23] A. C. Hollis, J. C. Scullty, “The Stress Corrosion Cracking and Hydrogen Embrittlement of Titanium in Methanol-Iodine Solutions”, Corrosion Science, 34 (1993) 837-850.
[24] P. K. Lai, M. S. Kazacos, “Electrodeposition of Aluminium in Aluminium Chloride/1-methyl-3-ethylimidazolium Chloride”, Journal of Electroanalytical Chemistry, Vol. 248, pp. 431-440, (1988).
[25] R. T. Carlin and R. A. Osteryoung, “Aluminum Anodization in a Basic Ambient Temperature Molten Salt”, Journal of the Electrochemical Society, Vol. 136, pp. 1409-1415, (1989).
[26] T.J. Melton, J. Joyce, J.T. Maloy, J.A. Boon and J.S. Wikes, “Electrochemical Studies of Sodium Chloride as a Lewis Buffer for Room Temperature Chloroaluminate Molten Salts”, Journal of the Electrochemical Society, Vol. 137, pp. 3865-3869, (1990).
[27] C. Leyens, M. Peters, “Titanium and Titanium Alloys, Fundamentals and Applications”, WILEY-VCH GmbH & Co. KGaA, pp. 5-10, (2003) .
[28] Smith, “Structure and Properties of Engineering Alloys”, McGraw-Hill, p. 433, (1993).
[29] H.K.D.H. Bhadeshia, “Metallurgy of Titanium and Its Alloys”, (2004).
[30] M.J. Donachie, JR, “Titanium and Titanium Alloy”, Source Book, pp. 10-14, (1982).
[31] A.V. Dobromyslov, V.A. Elkin, “Martensitic Transformation and Metastable β-Phase in Binary Titanium Alloys with d-Metals of 4-6 Periods”, Scripta Materialia, Vol. 44, pp. 905-910, (2001).
[32] T. Ahmed, H. J. Rack, “Phase Transformations During Cooling in α + β Titanium Alloys”, Materials Science and Engineering A, Vol. 243, pp. 206-211, (1998).
[33] S. L. Semiatin, S. L. Knisley, P. N. Fagin, F. Zhang, D. R. Barker, “Microstructure Evolution during Alpha-Beta Heat Treatment of Ti-6Al-4V”, Metallergical and Materials Transactions A, Vol. 34A, pp. 2377-2386, (2003)
[34] R. W. Schutz, D. E. Thomas, Corrosion of Titanium and Titanium Alloys, ASM Metals Handbook, 13 (1987) 669.
[35] R. E. Curtis, R. R. Boyer, J. C. Williams, “Relationship Between Composition Microstructure and Stress Corrosion Cracking (in Salt Solution) in Titanium Alloys”, Trans of ASM, Vol. 62, p. 457, (1969).
[36] N. R. Armstrong, R. K. Quinn, “Auger and X-ray Photoelectron Spectroscopic and Electrochemical Characterization of Titanium Thin Film Electrodes”, Surface Science, Vol. 67, pp. 451-468 (1977).
[37] R. W. Schutz, “An Overview of Beta Titanium Alloys Environmental Behavior”, in Beta Titanium Alloys in the 1990s, The Mineral, Metals & Materials Society, Warrendale, PA, pp. 75-91, (1993).
[38] A. Caprani, J. Frayret, “Behaviour of Titanium in Concentrated Hydrochloric Acid: Dissolution-Passivation Mechanism”, Electrochimica Acta, Vol. 24, pp. 835-842, (1979).
[39] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE (1974).
[40] S. Y. Yu, C. W. Brodrick, M. P. Ryan, J. R. Scully, “Effects of Nb and Zr Alloying Additions on the Activation Behavior of Ti in Hydrochloric Acid”, Journal of the Electrochemical Society, Vol. 146, pp. 4429-4438, (1999).
[41] J. S. L. Leach, B. R. Pearson, “Crystallization in Anodic Oxide Films”, Corrosion Science, Vol. 28, No. 1, pp. 43-56, (1988).
[42] N. Cassillas, S. J. Charelbois, W. H. Smyrl, H. White, “Scanning Electrochemical Microscopy of Precursor Sites for Pitting Corrosion on Titanium”, Journal of the Electrochemical Society, Vol. 140, pp. L142-L145, (1993).
[43] N. Cassillas, S. J. Charelbois, W. H. Smyrl, H. White, “Pitting Corrosion of Titanium”, Journal of the Electrochemical Society, Vol. 141, pp. 636-642, (1994).
[44] T. R. Beck, “Electrochemistry of Freshly-Generated Titanium Surfaces-II. Rapid Fracture Experiments”, Electrochimica Acta, Vol. 18, pp. 815-827, (1973).
[45] D. G. Kolman, J. R. Scully, “On the Repassivation Behavior of High-Purity Titanium and Selected α, β, and β + α Titanium Alloys in Aqueous Chloride Solutions”, Journal of the Electrochemical Society, Vol. 143, pp. 1847-1860, (1996).
[46] D. Tomashov, G. P. Shernova, Y. S. Ruscol, G. A. Ayuyan, “The Passivation of Alloys on Titanium Bases”, Electrochimica Acta, Vol. 19, pp. 159-172, (1974).
[47] T. Shibata, Y. Zhu, “The Effect of Temperature on the Growth of Anodic Oxide Film on Titanium”, Corrosion Science, Vol. 37, No. 1, pp. 133-144, (1995).
[48] T. Ohtsuka, M. Masuda, N. Sato, “Ellipsometric Study of Anodic Oxide Films on Titanium in Hydrochloric Acid, Sulfuric Acid, and Phosphate Solution”, Journal of the Electrochemical Society, Vol. 132. pp. 787-792, (1985).
[49] Sérgio Luis de Assis, “The Effect of Polarisation on the Electrochemical Behavior of Ti-13Nb-13Zr Alloy”, Materials Research, Vol. 10, No. 13, (2007).
[50] M. T. Pham, I. Zyganow, W. Matz, H. Reuther, S. Oswald, E. Richter and E. Weiser, “Corrosion Behavior and Microstructure of Titanium Implanted with α and β stabilizing elements”, Thin Solid Films, Vol. 310, pp. 251-259, (1997).
[51] Sodhi RNS, Weninger A and Davis JE, “X-ray Photoelectron Spectroscopic Comparison of Sputtered Ti, Ti-6Al-4V, and Passivated Bulk Metals for Use in Cell Culture Techniques”, J. Vac. Sci. Technol. A, Vol. 9, pp. 1329-1333, (1991).
[52] M. Ask, J. Lausmaa and B. Kasemo, “Preperation and Surface Spectrscopic Characterization of Oxide Films on Ti-6Al-4V” , Applied Surface Science, Vol. 35, No. 3, pp. 283-301, (1989).
[53] Y. Okazaki, T. Tateishi and Y. Ito, “Corrosion Resistance of Implant Alloys in Pseudo Physiological Solution and Role of Alloying Element in passive Films”, Materials Transactions, JIM, Vol. 38, No. 1, pp. 78-84, (1997).
[54] T. Sandararajan, U. K. Mudali, K. G. M. Nair, S. Rajeswari and M. Subbiyan, “Surface Characterization of Electrochemically Formed Passive Film on Nitrogen ion Implanted Ti-6Al-4V Alloy”, Materials Transactions, JIM, Vol. 39, No. 7, pp. 756-761, (1998).
[55] I. Milosev, M. M. Hukovic and H. H. Strehblow, “Passive Film on Orthopaedic TiAlV Alloy Formed in Physiological Solution Investigated by X-ray Photoelectron Spectroscopy”, Biomaterials, Vol. 21, No. 20, pp. 2103-2113, (2000)
[56] B. W. Callen, R.N.S. Sodhi and K. Griffith, “Examination of Clinical Preparations on Titanium and Ti-6Al-4V by X-ray Photoelectron Spectroscopy and Nuclear Reaction Analysis”, Progress in Surface Science, Vol. 50, No. 1-4, pp. 269-279, (1995).
[57] M. M. Hukovic, A. Kwokal and J. Piljac, “The Influence of Niobium and Vanadium on Passivity of Titanium-based Implants in Phisiological Solution”, Biomaterials, Vol. 24, No. 21, pp. 3765-3775, (2003).
[58] M. F. Lopez, A. Gutierrez and J. A. Jimenez, “Surface Chatacterization of New Non-toxic Titanium Alloys for Use as Biomaterials”, Surface Science, Vol. 482-485, pp. 300-305, (2001).
[59] M. Lewandoska, M. Pisarec, K. Rozniatowski, M. G. Dahlke, M. J. Czachor and K. J. Kurzydlowski, “Nanoscale Characterization of Anodic Oxide Films on Ti-6Al-4V Alloy”, Thin Solid Films, Vol. 515, No. 16, pp. 6460-6464, (2007).
[60] D.J. Blackwood and L. M. Peter, “Stability and Open Circuit Breakdown of the Passive Oxide Film on Titanium”, Electrochimica Acta, Vol. 33, No. 8, pp. 1143-1149, (1988).
[61] D.J. Blackwood, S.K.M. Chooi, “Stability of Protective Oxide Films Formed on a Porous Titanium”, Corrosion Science, Vol. 44, pp. 395-405, (2002).
[62] M. Karthega, V. Raman, N. Rajendran, “Influence of Potential on the Electrochemical Behaviour of β Titanium Alloys in Hank’s Solution”, Acta Biomaterialia, Vol. 3, pp.1019-1023, (2007).
[63] S. Tamilselvi, V. Raman, N. Rajendran, “Corrosion Behaviour of Ti–6Al–7Nb and Ti–6Al–4V ELI Alloys in the Simulated Body Fluid Solution by Electrochemical Impedance Spectroscopy”, Electrochimica Acta, Vol. 52, pp. 839-846, (2006).
[64] M. Geetha, U. K. Mudali, A.K. Gogia, R. Asokamani, Baldev Raj, “Influence of Microstructure and Alloying Elements on Corrosion Behavior of Ti–13Nb–13Zr Alloy”, Corrosion Science, Vol. 46, pp. 877-892, (2004).
[65] J.E.G. González, J.C. Mirza-Rosca, “Study of the Corrosion Behavior of Titanium and Some of Its Alloys for Biomedical and Dental Implant Applications”, Journal of Electroanalytical Chemistry, Vol. 47, pp. 109-115, (1999).
[66] A.K. Shukla, R. Balasubramaniam, S. Bhargava, “Properties of Passive Film Formed on CP Titanium, Ti–6Al–4V and Ti–13.4Al–29Nb Alloys in Simulated Human Body Conditions”, Intermetallics, Vol. 13, pp. 631-637, (2005)
[67] G.T. Burstein, C. Liu, R.M. Souto, “The Effect of Temperature on the Nucleation of Corrosion Pits on Titanium in Ringer’s Physiological Solution”, Biomaterials, Vol. 26, pp. 245-256, (2005).
[68] M. Pisarek, M. Lewandowska, A. Roguska, K.J. Kurzydłowski, M. Janik-Czachor, “SEM, Scanning Auger and XPS Characterization of Chemically Pretreated Ti Surfaces Intended for Biomedical Applications”, Materials Chemistry and Physics, Vol. 104, pp. 93-97, (2007).
[69] Z. G. Wang, X.T. Zu, J. Lian, X.Q. Huang, L. Wang, Y.Z. Liu, L.M. Wang, “Characterization of Oxide Layers on Ti-2Al-2.5Zr and Ti-4Al-2V Alloys Oxidized at 300 oC in a Neutral Water Steam”, Journal of Alloys and Compounds, Vol. 384, pp. 93-97, (2004).
[70] X. T. Zu, X. D. Feng, Z. G. Wang, G. T. Zeng, L. B. Lin, Y. L. Li, X. Q. Huang, “Characterisation of the Oxide Scale on a Ti-2Al-2.5Zr Alloy with and without Pre-Oxidation in an Alkaline Steam at 300 oC”, Surface and Coatings Technology, Vol. 148, pp. 216-220, (2001).
[71] X. T. Zu, Z. G. Wang, X. D. Feng, Y. Z. Huo, L. B. Lin, X. Q. Huang, Y. L. Li, “The Effect of Pre-oxidation on the Oxidation Behaviour of Ti-Alloy at 300 oC in an Alkaline Steam”, Surface and Coatings Technology, Vol. 140, pp. 161-165, (2001).
[72] A. Robin, H. R. Z. Sandim, J. L. Rosa, “Corrosion Behavior of the Ti-4% Al-4%V Alloy in Boiling Nitric Acid Solutions”, Corrosion Science, Vol. 41, pp. 1333-1346, (1999).
[73] A. Ravi Shankar, R. K. Dayal, R. Balasubramaniam, V. R. Raju,
R. Mythili, S. Saroja, M. Vijayalakshmi, V.S. Raghunathan, “Effect of heat treatment on the corrosion behaviour of Ti-5Ta-1.8Nb alloy in boiling concentrated nitric acid”, Journal of Nuclear Materials, Vol. 372, pp. 277-284, (2008).
[74] A. Fossati, F. Borgioli, E. Galvanetto, T. Bacci, “Corrosion Resistance Properties of Plasma Nitrided Ti-6Al-4V Alloy in Nitric Acid Solutions”, Corrosion Science, Vol. 46, pp. 917-927, (2004).
[75] M. Masmoudi, D. Capek, R. Abdelhedi, F. El Halouani, M. Wery, “Application of Surface Response Analysis to the Optimisation of Nitric Passivation of CP Titanium and Ti6Al4V”, Surface & Coatings Technology, Vol. 200, pp. 6651-6658, (1006).
[76] M.M. Khaled, “Potential Dependent Selective Dissolution of Ti-6Al-4V and Laser Treated Ti-6Al-4V in Acid/Chloride Media”, Journal of Applied Electrochemistry, Vol. 33, pp. 817-822, (2003).
[77] M. M. Khaled, B. S. Yilbas, I. Y. Al-Qaradawi, P. G. Coleman, D. Abdulmalik, Z. S. Seddigi, A. Abulkibash, B. F. Abu-Sharkh, M. M. Emad, “Corrosion Properties of Duplex Treated Ti-6Al-4V Alloy in Chloride Media Using Electrochemical and Positron Annihilation Spectroscopy Techniques”, Surface & Coatings Technology, Vol. 201, pp. 932-937, (2006).
[78] A. S. Mogoda, Y. H. Ahmad and W. A. Badawy, “Corrosion Behaviour of Ti-6Al-4V Alloy in Concentrated Hydrochloric and Sulphuric Acids”, Journal of Applied Electrochemistry, Vol. 34, pp. 873-878, (2004).
[79] K. R. Seddon, A. Stark, M.-J. Torres, “Influence of chloride, water, and organic solvents on the physical properties of ionic liquids”, Pure and Applied Chemistry, Vol. 72, pp. 2275-2287, (2000).
[80] P. Walden,Bull.Acad.Imper.Sci(St. Petersburg),1800,1914.
[81] F. H. Hurley, T. P. Wier, “Electrodeposition of Metals from Fused Quaternary Ammonium Salts”, Journal of the Electrochemical Society, Vol. 98, pp. 203-206, (1951).
[82] H. L. Chum, V. R. Koch, L. L. Miller, R. A. Osteryong, “An Electrochemical Scrutiny of Organometallic Iron Complexes and Hexamethylbenzene in a Room Temperature Molten Salt”, Journal of the American Chemical Society, Vol. 97, pp. 3264-3265, (1975).
[83] J. S. Wilkes, M.J. Zaworotko, “Air and Water Stable 1-Ethyl-3-methylimidazolium Based Ionic Liquids”, Journal of the Chemical Society Chemical Communication, pp. 965-967, (1992).
[84] J. H. Davis, Jr., P. A. Fox, “From curiosities tocommodities: ionic liquids begin the transition”, Chemical Communications, issue 11, pp. 1209-1212, (2003).
[85] Y. Chauvin, H. Olivier-Bourbigou, “Nonaqueous Ionic Liquids as Reaction Solvents”, CHEMTECH, Vol. 25, pp. 26-30, (1995).
[86] G. T. Wei, J. C. Chen, Z. Yang, “Studies on Liquid/liquid Extraction of Copper Ion with Room Temperature Ionic Liquid”, Journal of the Chinese Chemical Society, Vol. 50, pp. 1123-1130, (2003).
[87] G. T. Wei, Z. Yang, C. J. Chen, “Room Temperature Ionic Liquid as a Novel Medium for Liquid/Liquid Extraction of Metal Ions”, Analytica Chimica Acta, Vol. 488, pp. 183-192, (2003).
[88] A. E. Visser, R. P. Swatloski, R. D. Rogers, “pH-Dependent Partitioning in Room Temperature Ionic Liquids Provides a Link to Traditional Solvent Extraction Behavior”, Green Chemistry, Vol. 2, pp. 1-4, (2000).
[89] R. Al-Salman, J. Mallet, M. Molinari, P. Fricoteaux, F. Martineau, M. Troyon, S. Zein El Abedin, F. Endres, “Template assisted electrodeposition of germanium and silicon nanowires in an ionic liquid”, Physical Chemistry Chemical Physics, Vol. 10, pp. 6233-6237, (2008).
[90] Al-Salman, R., Zein El Abedin, S. & Endres, F., “Electrodeposition of Ge, Si and SixGe1−x from an air- and water-stable ionic liquid”, Phys. Chem. Chem. Phys. Vol. 10, pp. 4650-4657, (2008).
[91] D. R. MacFarlane, J. Huang, M. Forsyth, “Lithium-doped Plastic Crystal Electrolytes Exhibiting Fast Ion Conduction for Secondary Batteries”, Nature, Vol. 402, p. 792, (1999).
[92] M. Doyle, S. K. Choi, G. Proulx, “High Temperature Proton Conducting Membranes Based on Perfluorinated Inomer Membrane-Ionic Liquid Composites ”, Journal of the Electrochemical Society, Vol. 147, pp. 34-37, (2000).
[93] W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, “Quasi-Solid-State Dye-Sensitized Solar Cells Using Room Temperature Molten Salts and a Low Molecular Weight Gelator”, Chemical Communications, issue 4, pp. 374-375, (2002).
[94] T. J. Boyle, D. Ingersoll, M, A. Rodriguez, C. J. Tafoya, D. H. Doughty, “An Alternative Lithium Cathode Material: Synthesis, Characterization, and Electrochemical Analysis of Li8(Ni5Co2Mn)O16”, Journal of the Electrochemical Society, Vol. 146, pp. 1683-1686, (1999).
[95] A. Bakkar, V. Neubert, “Electrodeposition onto Magnesium in Air and Water Stable Ionic Liquids: From Corrosion to Successful Plating”, Electrochemistry Communications, Vol. 9 pp. 2428-2435, (2007).
[96] A.P. Abbott, J. Griffth, S. Nandhra, C. O'Connor, S. Postlethwaite, K. S. Ryder, E. L. Smith, “Sustained Electroless Deposition of Metallic Silver from a Choline Chloride-based Ionic Liquid”, Surface & Coatings Technology Vol. 202, pp. 2033-2039, (2008).
[97] A.P. Abbott, G. Capper, K. J. McKenzie, K. S. Ryder, “Voltammetric and Impedance Studies of the Electropolishing of Type 316 Stainless Steel in a Choline Chloride Based Ionic Liquid” , Electrochimica Acta Vol. 51, pp. 4420-4425, (2006).
[98] H. Y. Huang, C. J. Su, C. L. Kao, P. Y. Chen, “Electrochemical Study of Pt and Fe and Electrodeposition of PtFe Alloys from Air-and Water-Stable Room Temperature Ionic Liquids”, Journal of Electroanalytical Chemistry, Vol. 650, pp. 1-9, (2010).
[99] M. J. Deng, P. Y. Chen, T. L. Leong, I. W. Sun, J. K. Chang, W. T. Tsai, ´´Dicyanamide Anion Based Ionic Liquids for Electrodeposition of Metals´´, Electrochemistry Communications, Vol. 10, pp. 213-216, (2008).
[100] M. Uerdingen, C. Treber, M. Balser, G. Schmitt, C. Werner, ´´Corrosion Behavior of Ionic Liquids´´, Green Chemistry, Vol. 7, pp. 321-325, (2005).
[101] I. Perissi, U. Bardi, S. Caporali, A. Lavacchi, ´´High Temperature Corrosion Properties of Ionic Liquids´´, Corrosion Science, Vol. 48, pp. 2346-2362, (2006).
[102] C. H. Tseng, J. K. Chang, J. R. Chen, W. T. Tsai, M. J. Deng, I. W. Sun, “Corrosion Behaviors of Materials in Aluminum Chloride -1- ethyl - 3-methylimidazolium Chloride Ionic Liquid”, Electrochemistry Communications, Vol. 12, pp. 1091-1094, (2010).
[103] Y. S. Zhang, X. M. Zhu, M. Liu, R. X. Che, “Effects of Anodic Passivation on the Constitution, Stability and Resistance to Corrosion of Passive Film Formed on an Fe-24Mn-4Al-5Cr alloy”, Applied Surface Science, Vol. 222, pp. 89-101, (2004).
[104] D. Y. Yue, Y. Jing, Y. Yao, J. H. Sun and Y. Z. Jia, “Structure and electrochemical behavior of ionic liquid analogue based on choline chloride and urea”, Electrochimica Acta, in press, (2012).
[105] A. P. Abbott, G. Capper, D. L. Davies, R. Rasheed, “Ionic Liquids Based upon Metal Halide/Substituted Quaternary Ammonium Salt Mixtures”, Inorganic Chemistry, Vol. 43, pp. 3447- 3452, (2004).
[106] J. K. Chang, M. T. Lee, W. T. Tsai, M. J. Deng, I. W. Sun, “X-ray Photoelectron Spectroscopy and in Situ X-ray Absorption Spectroscopy Studies on Reversible Insertion/Desertion of Dicyanamide Anions into/from Manganese Oxide in Ionic Liquid”, Chemistry of Materials, Vol. 21, pp. 2688-2695, (2009).
[107] C. J. Dymek, Jr., J. L. Williams, D. J. Groeger, J. J. Auborn, “An Aluminum Acid-Base Concentration Cell Using Room Temperature Chloroaluminate Ionic Liquids ”, Journal of the Electrochemical Society, Vol. 131, pp. 2887-2892, (1984).
[108] C. D. Wagner, J. F. Moulder, L. E. Davis, W. M. Riggs, Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Eden Prairie (1995)
[109] Y. M. Shul’ ga, V. N. Troitskii, M. I. Aivazov, Y. G. Borod’ko, “X-ray Photoelectron Spectra of Scandium, Titanium, Vanadium, and Chromium Mononitrides”, Zh. Neorg. Khim., Vol. 21, p.2621, (1976).
[110] T. H. Lee, J. W. Rabalais, “X-ray Photoelectron Spectra and Electronic Structure of Some Diamine Compounds”, Journal of Electron Spectroscopy and Related Phenomena, Vol. 11, pp. 123-127, (1977).
[111] P. Wang, Z. Mai, Z. Dai, Y. Li and X. Zou, “Construction of Au Nanoparticles on Choline Chloride Modified Glassy Carbon
Electrode for Sensitive Detection of Nitrite”, Biosensors and Bioelectronics, Vol. 24, pp. 3242-3247, (2009).
[112] J. G. Dillard, L. T. Taylor, R. D. Seals, R. Alexander, “Core Electron Binding Energy Study of Group IIb-VIIa Compounds”, Inorganic Chemistry, Vol. 12, pp. 2485-2487, (1973).
[113] N.V. Likhanova, M.A. Domínguez-Aguilar, O.O. Xometl, N.N. Entzana, E. Arce and H. Dorantes, “The Effect of Ionic Liquids with Imidazolium and Pyridinium Cations on the Corrosion Inhibition of Mild Steel in Acidic Environment”, Corrosion. Science, Vol. 52, pp. 2088-2097, (2010).
[114] H.A. Sorkhabi and M. Es’haghi, “Corrosion Inhibition of Mild Steel in Acidic Media by [BMIm]Br Ionic Liquid”, Materials Chemistry and Physics, Vol. 114, pp. 267-271, (2009).
[115] X. Zhou, H. Yang, F. Wang, “[BMIM]BF4 Ionic Liquids as Effective Inhibitor for Carbon Steel in Alkaline Chloride Solution”, Electrochimica Acta, Vol. 56, pp. 4268-4275, (2011).
[116] Q.B. Zhang , Y.X. Hua, “Corrosion Inhibition of Mild Steel by Alkylimidazolium Ionic Liquids in Hydrochloric Acid”, Electrochimica Acta, Vol. 54, pp. 1881-1887, (2009).
[117] D. Pradhan, R.G. Reddt, and A. Lahiri, “Low-Temperature Production of Ti-Al Alloys Using Ionic Liquid Electrolytes: Effect of Process Variables on Current Density, Current Efficiency, and Deposit Morphology”, Metallurgical and Materials Transactions B, Vol. 40B, pp. 114-122, (2009).
[118] T. Tsuda, C. L. Hussey, G. R. Stafford and J. E. Bonevich, “Electrochemistry of Titanium and the Electrodeposition of Al-Ti Alloys in the Lewis Acidic Aluminum Chloride–1-Ethyl-3-methylimidazolium Chloride Melt”, Journal of The Electrochemical Society, Vol. 150, pp. C234-243, (2003).