簡易檢索 / 詳目顯示

研究生: 周婕伶
Chou, Chieh-Ling
論文名稱: 亞慢性奈米碳黑呼吸暴露對大鼠心血管的影響
Cardiovascular effect of subchronic inhalation exposure to carbon black nanoparticles in rats
指導教授: 張志欽
Chang, Chih-Ching
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 70
中文關鍵詞: 奈米碳黑呼吸暴露乙醯膽鹼半乳糖凝集素-3內皮功能失調
外文關鍵詞: Carbon black nanoparticles, Inhalation exposure, Acetylcholine, Galectin-3, Endothelial dysfunction
相關次數: 點閱:103下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據流行病學研究顯示,環境懸浮微粒汙染水平之上升與心血管疾病的罹病率及死亡率增加有關,但關於懸浮微粒誘發心血管系統損傷的機制有待進一步研究。因此本研究探討亞慢性奈米碳黑暴露造成的心血管不良效應,以及炎性蛋白半乳糖凝集素-3所可能扮演的角色。使用新開發的電腦控制奈米粒子呼吸暴露系統進行了奈米碳黑的吸入暴露,健康Wistar大鼠鼻部暴露於濃度為60萬(顆/立方公分)奈米碳黑氣膠連續十週或十三週(6小時/天,5天/週),於暴露結束後一天犧牲大鼠。目前研究結果顯示,亞慢性奈米碳黑呼吸暴露能夠使大鼠胸主動脈中乙醯膽鹼誘發的內皮依賴性舒張反應顯著降低。經由西方墨點法分析發現,吸入奈米碳黑十週增強了心臟及血管中半乳糖凝集素-3的蛋白表現量。值得注意的是,乙醯膽鹼舒張反應曲線之總曲線下面積與半乳糖凝集素-3蛋白量呈顯著負相關,決定係數(R2)為0.3877,因此血管半乳糖凝集素-3的表現增加可能代表血管發炎,氧化壓力上升,而與血管內皮功能失調有關。吸入奈米碳黑十週也會使心臟與肝臟其p-Akt/Akt比率降低以及同樣增加了半乳糖凝集素-3蛋白量,表示奈米碳黑可能會抑制Akt磷酸化之情形,可能影響組織的血糖利用。此外,經亞慢性奈米碳黑呼吸暴露之大鼠會導致心臟組織發生病變,產生心肌發炎、橫紋模糊之情形。本研究結果闡述了亞慢性奈米碳黑呼吸暴露可能會導致大鼠血管內皮功能失調,且半乳糖凝集素-3表達的增加可能在心血管疾病之發展中發揮作用,有必要進一步研究來確定半乳糖凝集素-3在空氣懸浮微粒誘導的不良系統性反應中所扮演的角色。

    Epidemiological studies have associated fine particulate matter (PM2.5) exposure with cardiovascular adverse outcomes. This study investigated the detrimental cardiovascular effects and the involvement of Galectin-3 (Gal-3) following subchronic carbon black nanoparticles (Nano CB) inhalation in rats. We conducted inhalation exposure of Nano CB (14 nm; Degussa) using a newly developed computer-controlled nanoparticle inhalation exposure system. Wistar rats were exposed nose-only to Nano CB aerosols (600,000 #/cm3, 6 hr/day, 5 day/wk, for 10 or 13 consecutive wks). One day after the last exposure, rats were sacrificed. The results showed that subchronic Nano CB inhalation exposure caused significant decrease on vasodilator responses to acetylcholine (ACh) of the thoracic aorta. Protein expression of Gal-3 was enhanced by Nano CB inhalation in heart and vascular tissue. A negative correlation was found between vascular Gal-3 expression and area under curve to ACh (R2= 0.3877) as well as ACh-induced maximal relaxation. Inhalation of Nano CB in rats for 10 weeks also reduced the p-Akt/Akt ratio, and increased the protein expression of Gal-3 in heart and liver, indicating that Nano CB may inhibit the phosphorylation of Akt, possibly leading to impaired tissue glucose usage. Histopathological examination of cardiac tissue showed aberrant distribution of inflammatory foci in Nano CB group for both 10 and 13 wks. Thus, subchronic inhalation exposure to Nano CB may cause endothelial dysfunction in rats. This study suggests that increased expression of Gal-3 may play a role in the development of cardiovascular disease. Further study is warranted to establish the role of Gal-3 in airborne nanoparticles-induced adverse systemic outcomes.

    中文摘要 I Abstract II 致謝 VI 目錄 VIII 圖目錄 X 表目錄 XI 第一章 序論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻探討 3 • 2.1 懸浮微粒之健康效應 3 • 2.1.1懸浮微粒與心血管系統健康效應之流行病學研究 3 • 2.1.2懸浮微粒誘發內皮功能失調之流行病學研究 6 • 2.1.3懸浮微粒影響代謝變化之流行病學研究 7 • 2.1.4大氣懸浮微粒之特性 8 • 2.2 內皮功能失調之病態生理機制 10 • 2.3 半乳糖凝集素-3與心血管及其相關疾病 12 • 2.4 暴露奈米微粒誘導心血管與系統性反應相關之人體及動物試驗 14 • 2.5 呼吸暴露空氣汙染物誘發內皮功能失調及其他心血管反應相關之動物實驗研究 16 • 2.6 懸浮微粒引發代謝異常之動物實驗研究 20 第三章 材料與方法 23 • 3.1 實驗材料 23 • 3.1.1 奈米碳黑微粒 23 • 3.1.2 製備奈米碳黑微粒之懸浮液 23 • 3.1.3 鼻腔呼吸暴露艙 23 • 3.1.4 實驗動物 24 • 3.1.5 大鼠暴露奈米碳黑微粒 25 • 3.2 實驗方法 25 • 3.2.1 離體組織器官浴槽系統 25 • 3.2.2 西方墨點法 26 • 3.2.3 H&E染色 28 • 3.2.4 免疫組織化學染色法 29 • 3.2.5 馬森三色染色法 30 • 3.3 統計分析 32 第四章 結果 33 • 4.1 吸入奈米碳黑十週後大鼠血管內皮功能之評估 33 • 4.2 亞慢性奈米碳黑呼吸暴露以探討半乳糖凝集素-3在心血管效應中扮演的角色 36 • 4.3 大鼠吸入奈米碳黑十週後導致代謝異常之情形 41 • 4.4 經奈米碳黑呼吸暴露十週導致大鼠心臟發炎及產生的組織病理變化 45 • 4.5 吸入奈米碳黑十三週後大鼠血管內皮功能之評估 47 • 4.6 吸入奈米碳黑十三週後大鼠血管及肝臟Akt磷酸化之情形 52 • 4.7 經奈米碳黑呼吸暴露十三週導致大鼠心臟發炎及產生的組織病理變化 54 第五章 討論 56 第六章 結論 61 第七章 參考文獻 62

    Anderson, H. D., Rahmutula, D., & Gardner, D. G. (2004). Tumor necrosis factor-α inhibits endothelial nitric-oxide synthase gene promoter activity in bovine aortic endothelial cells. Journal of Biological Chemistry, 279(2), 963-969.
    Bind, M.-A., Baccarelli, A., Zanobetti, A., Tarantini, L., Suh, H., Vokonas, P., et al. (2012). Air pollution and markers of coagulation, inflammation and endothelial function: Associations and epigene-environment interactions in an elderly cohort. Epidemiology (Cambridge, Mass.), 23(2), 332.
    Bourdrel, T., Bind, M.-A., Béjot, Y., Morel, O., & Argacha, J.-F. (2017). Cardiovascular effects of air pollution. Archives of cardiovascular diseases, 110(11), 634-642.
    Briet, M., Collin, C., Laurent, S., Tan, A., Azizi, M., Agharazii, M., et al. (2007). Endothelial function and chronic exposure to air pollution in normal male subjects. Hypertension, 50(5), 970-976.
    Brook, R. D., Rajagopalan, S., Pope III, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., et al. (2010). Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation, 121(21), 2331-2378.
    Cai, Y., Zhang, B., Ke, W., Feng, B., Lin, H., Xiao, J., et al. (2016). Associations of short-term and long-term exposure to ambient air pollutants with hypertension: a systematic review and meta-analysis. Hypertension, 68(1), 62-70.
    Calderón-Garcidueñas, L., Vincent, R., Mora-Tiscareño, A., Franco-Lira, M., Henríquez-Roldán, C., Barragán-Mejía, G., et al. (2007). Elevated plasma endothelin-1 and pulmonary arterial pressure in children exposed to air pollution. Environmental health perspectives, 115(8), 1248-1253.
    Cesaroni, G., Forastiere, F., Stafoggia, M., Andersen, Z. J., Badaloni, C., Beelen, R., et al. (2014). Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. Bmj, 348, f7412.
    Chen, A., Hou, W., Zhang, Y., Chen, Y., & He, B. (2015). Prognostic value of serum galectin-3 in patients with heart failure: a meta-analysis. International journal of cardiology, 182, 168-170.
    Chen, C. C., Chen, P. S., & Yang, C. Y. (2019). Relationship between fine particulate air pollution exposure and human adult life expectancy in Taiwan. Journal of Toxicology and Environmental Health, Part A, 82(14), 826-832.
    Chen, R., Hu, B., Liu, Y., Xu, J., Yang, G., Xu, D., et al. (2016). Beyond PM2. 5: the role of ultrafine particles on adverse health effects of air pollution. Biochimica et Biophysica Acta (BBA)-General Subjects, 1860(12), 2844-2855.
    Chen, S. Y., Wu, C.-F., Lee, J.-H., Hoffmann, B., Peters, A., Brunekreef, B., et al. (2015). Associations between long-term air pollutant exposures and blood pressure in elderly residents of Taipei city: a cross-sectional study. Environmental health perspectives, 123(8), 779-784.
    Chen, Y.-C., Weng, Y.-H., Chiu, Y.-W., & Yang, C.-Y. (2015). Short-term effects of coarse particulate matter on hospital admissions for cardiovascular diseases: A case-crossover study in a tropical city. Journal of Toxicology and Environmental Health, Part A, 78(19), 1241-1253.
    Chu, C., Zhou, L., Xie, H., Pei, Z., Zhang, M., Wu, M., et al. (2019). Pulmonary toxicities from a 90-day chronic inhalation study with carbon black nanoparticles in rats related to the systemical immune effects. International journal of nanomedicine, 14, 2995.
    Courtois, A., Andujar, P., Ladeiro, Y., Baudrimont, I., Delannoy, E., Leblais, V., et al. (2008). Impairment of NO-dependent relaxation in intralobar pulmonary arteries: comparison of urban particulate matter and manufactured nanoparticles. Environmental health perspectives, 116(10), 1294-1299.
    Davel, A. P., Lemos, M., Pastro, L. M., Pedro, S. C., de André, P. A., Hebeda, C., et al. (2012). Endothelial dysfunction in the pulmonary artery induced by concentrated fine particulate matter exposure is associated with local but not systemic inflammation. Toxicology, 295(1-3), 39-46.
    De Boer, R., Van Veldhuisen, D., Gansevoort, R., Muller Kobold, A., Van Gilst, W., Hillege, H., et al. (2012). The fibrosis marker galectin‐3 and outcome in the general population. Journal of internal medicine, 272(1), 55-64.
    Dong, R., Zhang, M., Hu, Q., Zheng, S., Soh, A., Zheng, Y., et al. (2018). Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy. International journal of molecular medicine, 41(2), 599-614.
    Donnini, D., Perrella, G., Stel, G., Ambesi-Impiombato, F. S., & Curcio, F. (2000). A new model of human aortic endothelial cells in vitro. Biochimie, 82(12), 1107-1114.
    Faustini, A., Stafoggia, M., Cappai, G., & Forastiere, F. (2012). Short-term effects of air pollution in a cohort of patients with chronic obstructive pulmonary disease. Epidemiology, 861-869.
    Garcia, C. A., Yap, P.-S., Park, H.-Y., & Weller, B. L. (2016). Association of long-term PM2. 5 exposure with mortality using different air pollution exposure models: impacts in rural and urban California. International journal of environmental health research, 26(2), 145-157.
    Gerlofs-Nijland, M. E., Totlandsdal, A. I., Kilinç, E., Boere, A. J. F., Fokkens, P. H., Leseman, D. L., et al. (2010). Pulmonary and cardiovascular effects of traffic-related particulate matter: 4-week exposure of rats to roadside and diesel engine exhaust particles. Inhalation toxicology, 22(14), 1162-1173.
    Gibbons, G. H. (1997). Endothelial function as a determinant of vascular function and structure: a new therapeutic target. The American journal of cardiology, 79(5), 3-8.
    Gilmour, P. S., Ziesenis, A., Morrison, E. R., Vickers, M. A., Drost, E. M., Ford, I., et al. (2004). Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicology and applied pharmacology, 195(1), 35-44.
    Haberzettl, P., O’Toole, T. E., Bhatnagar, A., & Conklin, D. J. (2016). Exposure to fine particulate air pollution causes vascular insulin resistance by inducing pulmonary oxidative stress. Environmental health perspectives, 124(12), 1830-1839.
    Hamanaka, R. B., & Mutlu, G. M. (2018). Particulate matter air pollution: effects on the cardiovascular system. Frontiers in endocrinology, 9.
    Henderson, N. C., & Sethi, T. (2009). The regulation of inflammation by galectin‐3. Immunological reviews, 230(1), 160-171.
    Huang, W., Wang, L., Li, J., Liu, M., Xu, H., Liu, S., et al. (2018). Short-term blood pressure responses to ambient fine particulate matter exposures at the extremes of global air pollution concentrations. American journal of hypertension, 31(5), 590-599.
    Huttunen, K., Siponen, T., Salonen, I., Yli-Tuomi, T., Aurela, M., Dufva, H., et al. (2012). Low-level exposure to ambient particulate matter is associated with systemic inflammation in ischemic heart disease patients. Environmental research, 116, 44-51.
    Ikeda, M., Suzuki, M., Watarai, K., Sagai, M., & Tomita, T. (1995). Impairment of endothelium-dependent relaxation by diesel exhaust particles in rat thoracic aorta. The Japanese Journal of Pharmacology, 68(2), 183-189.
    Janus, A., Szahidewicz-Krupska, E., Mazur, G., & Doroszko, A. (2016). Insulin resistance and endothelial dysfunction constitute a common therapeutic target in cardiometabolic disorders. Mediators of inflammation, 2016.
    Kaur, S., Nieuwenhuijsen, M. J., & Colvile, R. N. (2007). Fine particulate matter and carbon monoxide exposure concentrations in urban street transport microenvironments. Atmospheric Environment, 41(23), 4781-4810.
    Kim, F., Pham, M., Maloney, E., Rizzo, N. O., Morton, G. J., Wisse, B. E., et al. (2008). Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arteriosclerosis, thrombosis, and vascular biology, 28(11), 1982-1988.
    Kim, J.-a., Montagnani, M., Koh, K. K., & Quon, M. J. (2006). Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation, 113(15), 1888-1904.
    Kodavanti, U. P., Moyer, C. F., Ledbetter, A. D., Schladweiler, M. C., Costa, D. L., Hauser, R., et al. (2003). Inhaled environmental combustion particles cause myocardial injury in the Wistar Kyoto rat. Toxicological Sciences, 71(2), 237-245.
    Li, P., Liu, S., Lu, M., Bandyopadhyay, G., Oh, D., Imamura, T., et al. (2016). Hematopoietic-derived galectin-3 causes cellular and systemic insulin resistance. Cell, 167(4), 973-984. e912.
    Li, R., Kou, X., Geng, H., Xie, J., Tian, J., Cai, Z., et al. (2015). Mitochondrial damage: an important mechanism of ambient PM2. 5 exposure-induced acute heart injury in rats. Journal of hazardous materials, 287, 392-401.
    Lindmark, E., Diderholm, E., Wallentin, L., & Siegbahn, A. (2001). Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. Jama, 286(17), 2107-2113. Retrieved from https://jamanetwork.com/journals/jama/articlepdf/194335/joc10679.pdf.
    Liu, V. W., & Huang, P. L. (2008). Cardiovascular roles of nitric oxide: a review of insights from nitric oxide synthase gene disrupted mice. Cardiovascular research, 77(1), 19-29.
    Lucking, A. J., Lundbäck, M., Barath, S. L., Mills, N. L., Sidhu, M. K., Langrish, J. P., et al. (2011). Particle traps prevent adverse vascular and prothrombotic effects of diesel engine exhaust inhalation in men. Circulation, 123(16), 1721-1728.
    MacKinnon, A. C., Liu, X., Hadoke, P. W., Miller, M. R., Newby, D. E., & Sethi, T. (2013). Inhibition of galectin-3 reduces atherosclerosis in apolipoprotein E-deficient mice. Glycobiology, 23(6), 654-663.
    Madrigal‐Matute, J., Lindholt, J. S., Fernandez‐Garcia, C. E., Benito‐Martin, A., Burillo, E., Zalba, G., et al. (2014). Galectin‐3, a biomarker linking oxidative stress and inflammation with the clinical outcomes of patients with atherothrombosis. Journal of the American Heart Association, 3(4), e000785.
    Meo, S., Memon, A., Sheikh, S., Rouq, F., Usmani, A. M., Hassan, A., et al. (2015). Effect of environmental air pollution on type 2 diabetes mellitus. Eur Rev Med Pharmacol Sci, 19(1), 123-128.
    Miller, M. R., Borthwick, S. J., Shaw, C. A., McLean, S. G., McClure, D., Mills, N. L., et al. (2008). Direct impairment of vascular function by diesel exhaust particulate through reduced bioavailability of endothelium-derived nitric oxide induced by superoxide free radicals. Environmental health perspectives, 117(4), 611-616.
    Mills, N. L., Donaldson, K., Hadoke, P. W., Boon, N. A., MacNee, W., Cassee, F. R., et al. (2009). Adverse cardiovascular effects of air pollution. Nature Reviews Cardiology, 6(1), 36.
    Nemmar, A., Hoet, P. M., Vanquickenborne, B., Dinsdale, D., Thomeer, M., Hoylaerts, M., et al. (2002). Passage of inhaled particles into the blood circulation in humans. Circulation, 105(4), 411-414.
    Nurkiewicz, T., Porter, D. W., Barger, M., Millecchia, L., Rao, K. M. K., Marvar, P. J., et al. (2005). Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure. Environmental health perspectives, 114(3), 412-419.
    Nurkiewicz, T. R., Porter, D. W., Hubbs, A. F., Cumpston, J. L., Chen, B. T., Frazer, D. G., et al. (2008). Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Particle and fibre toxicology, 5(1), 1.
    Pearson, J. F., Bachireddy, C., Shyamprasad, S., Goldfine, A. B., & Brownstein, J. S. (2010). Association between fine particulate matter and diabetes prevalence in the US. Diabetes care, 33(10), 2196-2201.
    Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., et al. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 287(9), 1132-1141.
    Pope III, C. A., Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., Krewski, D., et al. (2004). Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation, 109(1), 71-77.
    Pope III, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the air & waste management association, 56(6), 709-742.
    Pope III, C. A., Muhlestein, J. B., May, H. T., Renlund, D. G., Anderson, J. L., & Horne, B. D. (2006). Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution. Circulation, 114(23), 2443-2448.
    Rajagopalan, S., Al-Kindi, S. G., & Brook, R. D. (2018). Air pollution and cardiovascular disease: JACC state-of-the-art review. Journal of the American College of Cardiology, 72(17), 2054-2070.
    Ridker, P. M., Rifai, N., Stampfer, M. J., & Hennekens, C. H. (2000). Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation, 101(15), 1767-1772.
    Robertson, S., Gray, G. A., Duffin, R., McLean, S. G., Shaw, C. A., Hadoke, P. W., et al. (2012). Diesel exhaust particulate induces pulmonary and systemic inflammation in rats without impairing endothelial function ex vivo or in vivo. Particle and fibre toxicology, 9(1), 9.
    Saltiel, A. R., & Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414(6865), 799.
    Samoli, E., Atkinson, R. W., Analitis, A., Fuller, G. W., Green, D. C., Mudway, I., et al. (2016). Associations of short-term exposure to traffic-related air pollution with cardiovascular and respiratory hospital admissions in London, UK. Occup Environ Med, 73(5), 300-307.
    Schindler, E. I., Szymanski, J. J., Hock, K. G., Geltman, E. M., & Scott, M. G. (2016). Short-and long-term biologic variability of galectin-3 and other cardiac biomarkers in patients with stable heart failure and healthy adults. Clinical chemistry, 62(2), 360-366.
    Schneider, A., Neas, L., Herbst, M. C., Case, M., Williams, R. W., Cascio, W., et al. (2008). Endothelial dysfunction: associations with exposure to ambient fine particles in diabetic individuals. Environmental health perspectives, 116(12), 1666-1674.
    Schneider, A., Neas, L. M., Graff, D. W., Herbst, M. C., Cascio, W. E., Schmitt, M. T., et al. (2010). Association of cardiac and vascular changes with ambient PM 2.5 in diabetic individuals. Particle and fibre toxicology, 7(1), 14.
    Schulz, H., Harder, V., Ibald-Mulli, A., Khandoga, A., Koenig, W., Krombach, F., et al. (2005). Cardiovascular effects of fine and ultrafine particles. Journal of aerosol medicine, 18(1), 1-22.
    Sharma, U. C., Pokharel, S., van Brakel, T. J., van Berlo, J. H., Cleutjens, J. P., Schroen, B., et al. (2004). Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation, 110(19), 3121-3128.
    Simkhovich, B. Z., Kleinman, M. T., & Kloner, R. A. (2008). Air pollution and cardiovascular injury: epidemiology, toxicology, and mechanisms. Journal of the American College of Cardiology, 52(9), 719-726.
    Sun, Q., Wang, A., Jin, X., Natanzon, A., Duquaine, D., Brook, R. D., et al. (2005). Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. Jama, 294(23), 3003-3010.
    Sun, Q., Yue, P., Deiuliis, J. A., Lumeng, C. N., Kampfrath, T., Mikolaj, M. B., et al. (2009). Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation, 119(4).
    Suthahar, N., Meijers, W. C., Silljé, H. H., Ho, J. E., Liu, F.-T., & de Boer, R. A. (2018). Galectin-3 activation and inhibition in heart failure and cardiovascular disease: an update. Theranostics, 8(3), 593.
    Świderska, E., Strycharz, J., Wróblewski, A., Szemraj, J., Drzewoski, J., & Śliwińska, A. (2018). Role of PI3K/AKT Pathway in Insulin-Mediated Glucose Uptake. In Glucose Transport: IntechOpen.
    Tamagawa, E., Bai, N., Morimoto, K., Gray, C., Mui, T., Yatera, K., et al. (2008). Particulate matter exposure induces persistent lung inflammation and endothelial dysfunction. American Journal of Physiology-Lung Cellular and Molecular Physiology, 295(1), L79-L85.
    Törnqvist, H. k., Mills, N. L., Gonzalez, M., Miller, M. R., Robinson, S. D., Megson, I. L., et al. (2007). Persistent endothelial dysfunction in humans after diesel exhaust inhalation. American journal of respiratory and critical care medicine, 176(4), 395-400.
    Tuñón, J., Blanco-Colio, L., Cristóbal, C., Tarín, N., Higueras, J., Huelmos, A., et al. (2014). Usefulness of a combination of monocyte chemoattractant protein-1, galectin-3, and N-terminal probrain natriuretic peptide to predict cardiovascular events in patients with coronary artery disease. The American journal of cardiology, 113(3), 434-440.
    Upadhyay, S., Ganguly, K., Stoeger, T., Semmler-Bhenke, M., Takenaka, S., Kreyling, W. G., et al. (2010). Cardiovascular and inflammatory effects of intratracheally instilled ambient dust from Augsburg, Germany, in spontaneously hypertensive rats (SHRs). Particle and fibre toxicology, 7(1), 27.
    Upadhyay, S., Stoeger, T., George, L., Schladweiler, M. C., Kodavanti, U., Ganguly, K., et al. (2014). Ultrafine carbon particle mediated cardiovascular impairment of aged spontaneously hypertensive rats. Particle and fibre toxicology, 11(1), 36.
    Vesterdal, L. K., Folkmann, J. K., Jacobsen, N. R., Sheykhzade, M., Wallin, H., Loft, S., et al. (2010). Pulmonary exposure to carbon black nanoparticles and vascular effects. Particle and fibre toxicology, 7(1), 33.
    Vesterdal, L. K., Mikkelsen, L., Folkmann, J. K., Sheykhzade, M., Cao, Y., Roursgaard, M., et al. (2012). Carbon black nanoparticles and vascular dysfunction in cultured endothelial cells and artery segments. Toxicology letters, 214(1), 19-26.
    Wan, G., Rajagopalan, S., Sun, Q., & Zhang, K. (2010). Real-world exposure of airborne particulate matter triggers oxidative stress in an animal model. International journal of physiology, pathophysiology and pharmacology, 2(1), 64.
    Wang, C., Tu, Y., Yu, Z., & Lu, R. (2015). PM2. 5 and cardiovascular diseases in the elderly: An overview. International journal of environmental research and public health, 12(7), 8187-8197.
    Wu, G., & Meininger, C. J. (2009). Nitric oxide and vascular insulin resistance. Biofactors, 35(1), 21-27.
    Xu, X., Liu, C., Xu, Z., Tzan, K., Zhong, M., Wang, A., et al. (2011). Long-term exposure to ambient fine particulate pollution induces insulin resistance and mitochondrial alteration in adipose tissue. Toxicological Sciences, 124(1), 88-98.
    Yamawaki, H., & Iwai, N. (2006). Mechanisms underlying nano-sized air-pollution-mediated progression of atherosclerosis. Circulation Journal, 70(1), 129-140.
    Zhang, R., Dai, Y., Zhang, X., Niu, Y., Meng, T., Li, Y., et al. (2014). Reduced pulmonary function and increased pro-inflammatory cytokines in nanoscale carbon black-exposed workers. Particle and fibre toxicology, 11(1), 73. Retrieved from https://doi.org/10.1186/s12989-014-0073-1. doi:10.1186/s12989-014-0073-1
    Zhang, Z., Chan, T.-C., Guo, C., Chang, L.-y., Lin, C., Chuang, Y. C., et al. (2018). Long-term exposure to ambient particulate matter (PM2. 5) is associated with platelet counts in adults. Environmental pollution, 240, 432-439.
    Zheng, Z., Xu, X., Zhang, X., Wang, A., Zhang, C., Hüttemann, M., et al. (2013). Exposure to ambient particulate matter induces a NASH-like phenotype and impairs hepatic glucose metabolism in an animal model. Journal of hepatology, 58(1), 148-154.
    郭虹萱. (2016). 血管收縮素 II 及其第一型受體於奈米微粒誘發肺損傷所扮演的角色. 成功大學環境醫學研究所學位論文(2016年), 1-57.
    吳義林、簡智祥(2006)。夏季南部次微米微粒之逐時濃度變化以及粒徑分佈,空氣污染控制技術研討會 。

    下載圖示 校內:2023-01-01公開
    校外:2023-01-01公開
    QR CODE