簡易檢索 / 詳目顯示

研究生: 郭志鴻
Chi-Hong, Kuok
論文名稱: 無機廢棄物產製高效能調濕塗料之研究
Preparation of humidity control coatings by recycling inorganic wastes
指導教授: 劉守恒
Liu, Shou-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 118
中文關鍵詞: 無機污泥廢觸媒調濕塗料中孔結構
外文關鍵詞: Inorganic wastes, mesoporous structure, humidity control coatings
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無機廢棄物(如焚化灰渣、淨水污泥、廢矽藻土與煤灰等)每年在台灣的產生量極大,其回收利用率低,且成份以無機為主,無法使用焚化處理,故大部分會以掩埋的方式來處理。如此大量的廢棄物進入掩埋場勢必會加快掩埋場飽和的速度,若未有妥善掩埋,甚至會對生態環境造成嚴重的影響。因此,處理無機廢棄物是刻不容緩的,本研究希望以回收再利用技術,將無機廢棄物進行再利用作為資材,以達到資源循環型社會的目標。

    本研究主要針對無機泥碴ESF (Enhancement Silica Fume)及石油煉化裂解廢觸媒sFCCCs(sFCC catalysts)進行循環利用並高質化。ESF為傳統產業製造過程中所產生的無機污泥,其化學組成以無晶型的二氧化矽(SiO2)為主,其含量高達95%以上,並有高比表面積特性;sFCCCs為沸石結構,故同樣有高比表面積及多孔特性,所以兩者都具有發展成為中孔調濕塗料的潛力。本研究以無機泥碴ESF、半水石膏(β- CaSO4.0.5H2O)、矽酸鈉 (Na2SiO3)、丙烯聚合物與高嶺土為原料,配合簡易的程序製作出具有中孔洞(2~50 nm)的調濕塗料。透過調整ESF、sFCCCs及矽酸鈉兩者的比例,歸納出具最佳調濕能力及機械性能的配比,進行調濕性能測試,並與目前市售之商業調濕塗料進行比較。

    研究結果顯示,無機泥碴ESF為原料製作調濕塗料之最佳樣品為C-0.4/0.05/0.1,以日本工業標準之建築塗料規範進行吸放濕試驗,其吸水量為309 g/m2,高於市售商業用塗料5倍;在模擬測試中,能有效控制濕度變化幅度在7%。另外,調濕塗料具有與市售商業用塗料相約的塗膜硬度;同時也具有大於99.99%的抗菌率,且在TCLP溶出試驗中,符合綠建材溶出規範。因此,以廢棄物循環再利用成資材是可行的,除了能解決無機泥碴掩埋的問題,同時也能以廢棄物轉化成高價值材料,符合資源循環型社會之理念。

    The annual output of inorganic sludge was estimated to be 5.5 million tons in Taiwan. In general, sludge can be applied to improve nutrients in soil and also used as building materials. Actually, the recovery rate is low and most of the sludge would be deposed to landfill, which is the easiest way for waste treatments. However, it will cause some problems such as saturation and pollution. Therefore, recycling and valorization are economically viable and environmentally friendly. Indoor humidity environment is related to healthy and energy consumption. High relative humidity will promote mold, mildew, dust mites and bacteria growth rapidly. In addition, it also makes the feeling of body discomfort. Thus, “Humidity control materials” was developed in the country with high relative humidity problem, such as Japan, Taiwan, etc. In this study, humidity control coatings (HCCs) are prepared from enhancement silica fume (ESF) and spent fluid catalytic cracking catalysts (sFCCCs) from traditional industry. Experimentally, moisture adsorption-desorption performance of the humidity control materials increases as ESF increases; moreover, sFCCCs improve the performance on lower humidity range. The results show that HCCs are provided with mesopores structure as well as the moisture adsorbed value and content are respectively 309 g/m2 and 27.0%, which are better than commercial coatings. According to N2 adsorption-desorption analysis, the HCCs exhibit type-IV isotherms with hysteresis behavior of H3 loop, suggesting the mesoporous distributions ranging from 2-50 nm. Most importantly, HCCs possess good film hardness, 99.99% of antimicrobial efficacy and environmental friendliness according to the TCLP leaching tests.

    摘要 I Abstract II CONTENT III LIST OF TABLES V LIST OF FIGURES VII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Objectives 2 Chapter 2 Literatures review 3 2.1 Inorganic sludge 3 2.1.1 Situation of Inorganic sludge 3 2.1.2 Re-using of Inorganic sludge 5 2.1.3 Production and property of ESF 7 2.1.4 Spent catalyst (Spent fluid catalytic cracking catalysts, sFCCC) 8 2.2 Indoor paints 11 2.2.1 Conventional paint components 11 2.2.2 Alternative coatings 15 2.2.3 Recycling of inorganic solid waste in coating 17 2.3 Relative humidity 18 2.3.1 Definition of relative humidity 18 2.3.2 Relative humidity in Taiwan 20 2.3.3 Influence of indoor relative humidity 23 2.4 Humidity control materials 27 2.4.1 Theory of humidity control 27 2.4.2 Adsorption isotherms and Hysteresis loops 31 2.4.3 Different types of humidity control materials 35 Chapter 3 Experimental methods 40 3.1 Experimental procedures 40 3.2 Preparation of Humidity control materials 43 3.2.1 Chemicals 43 3.2.2 Pretreatment of inorganic wastes 43 3.2.3 Formula of humidity control coatings 45 3.2.4 Sample coating of HCC 48 3.3 Humidity control tests 49 3.3.1 JIS-A 6909-7.29 49 3.3.2 JIS-A 1470-1 and Cyclic test 50 3.3.3 Hygroscopic sorption properties 53 3.3.4 Humidity control performance at different temperature 53 3.4 Characterization and Analysis 55 3.4.1 Scanning Electron Microscope 55 3.4.2 X-ray Diffraction 55 3.4.3 DSC-TGA 56 3.4.4 X-ray fluorescene spectrometer 57 3.4.5 Laser particle size analyzer 57 3.4.6 Inductively coupled plasma-optical emission spectrometer 57 3.4.7 Accelerated Surface Area and Porosimetry system 57 3.4.8 Heavy metal 58 3.4.9 Toxicity characteristic leaching procedure (TCLP) test 59 3.4.10 Mechanical property test 59 3.4.11 Antibacterial test 60 3.4.12 Loss on Ignition (LOI) of solid combustion residues 60 3.4.13 Surface properties of humidity control coatings 61 Chapter 4 Results and discussion 62 4.1 Characteristics of ESF 62 4.1.1 Chemical characteristics 62 4.1.2 Physical characteristics 67 4.2 Performance of HCC with different weight ratios of ESF 72 4.2.1 The properties of porous structure in the HCC 72 4.2.2 Moisture adsorption-desorption capacity tests 77 4.3 Performance of HCC with different weight ratios of sodium silicate 83 4.3.1 The effects of sodium silicate in the HCC 83 4.3.2 Moisture adsorption-desorption capacity tests 89 4.4 Performance of humidity control coatings by sFCCC replacement 94 4.4.1 The effects of sFCCCs replacement in the HCC 94 4.4.2 Moisture adsorption-desorption capacity tests 98 4.5 Comparisons of prepared HCCs with commercial coatings 103 4.5.1 Moisture adsorption-desorption capacity tests 103 4.5.2 Controlling ability of relative humidity with simulation tests 106 4.5.3 Mechanical properties of Humidity control coatings 107 4.5.4 Antibacterial properties of humidity control coating 108 4.5.5 Environmental compatibility of humidity control coatings 109 Chapter 5 Conclusions 110 References 111

    Akhondi, E., Wicaksana, F., Krantz, W. B., &Fane, A. G. (2014). Evapoporometry determination of pore-size distribution and pore fouling of hollow fiber membranes. Journal of Membrane Science, 470, 334–345.
    Alexander, G. B., Heston, W. M., &Iler, R. K. (1954). The solubility of amorphous silica in water. Journal of Physical Chemistry, 58(6), 453–455.
    Al-Jabri, K., Baawain, M., Taha, R., Al-Kamyani, Z. S., Al-Shamsi, K., &Ishtieh, A. (2013). Potential use of FCC spent catalyst as partial replacement of cement or sand in cement mortars. Construction and Building Materials, 39, 77–81.
    Allen, N. S., Edge, M., Verran, J., Stratton, J., Maltby, J., &Bygott, C. (2008). Photocatalytic titania based surfaces: Environmental benefits. Polymer Degradation and Stability, 93(9), 1632–1646.
    B. D. Cullity. (1956). Elements of X-Ray Diffraction. Addition-Wesley Publishing Company, Inc.
    Behera, B., &Ray, S. S. (2009). Structural changes of FCC catalyst from fresh to regeneration stages and associated coke in a FCC refining unit: A multinuclear solid state NMR approach. Catalysis Today, 141(1–2), 195–204.
    Benlalla, A., Elmoussaouiti, M., Dahhou, M., &Assafi, M. (2015). Utilization of water treatment plant sludge in structural ceramics bricks. Applied Clay Science, 118, 171–177.
    Camuffo, D. (2014). Microclimate for Cultural Heritage. Elsevier B.V., ISBN 9780444632968.
    Casey, S. P., Hall, M. R., Tsang, S. C. E., &Khan, M. A. (2013). Energetic and hygrothermal analysis of a nano-structured material for rapid-response humidity buffering in closed environments. Building and Environment, 60, 24–36.
    Chapter 2 Humidity (2007), Developments in Atmospheric Science, 23, 42–89.
    Chen, C., Yu, J., Yoza, B. A., Li, Q. X., &Wang, G. (2015). A novel “wastes-treat-wastes” technology: Role and potential of spent fluid catalytic cracking catalyst assisted ozonation of petrochemical wastewater. Journal of Environmental Management, 152, 58–65.
    Chen, Z., &Qin, M. (2016). Preparation and hygrothermal properties of composite phase change humidity control materials. Applied Thermal Engineering, 98, 1150–1157.
    Dannemiller, K. C., Weschler, C. J., &Peccia, J. (2017). Fungal and bacterial growth in floor dust at elevated relative humidity levels. Indoor Air, 27(2), 354–363.
    Davis, R. E., McGregor, G. R., &Enfield, K. B. (2016). Humidity: A review and primer on atmospheric moisture and human health. Environmental Research, 144, 106–116.
    Drobíková, K., Plachá, D., Motyka, O., Gabor, R., Kutláková, K. M., Vallová, S., &Seidlerová, J. (2016). Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel. Waste Management, 48, 471–477.
    Elisabeth Heseltine, &Jerome Rose. (2009). WHO guidelines for indoor air quality : dampness and mould, World Health Organization, ISBN 9789289041683.
    El-Sabaawi, M., &Pel, D. C. T. (1977). Moisture Isotherms of Hygroscopic Porous Solids. Industrial and Engineering Chemistry Fundamentals, 16(3), 321–326.
    Ferella, F., Innocenzi, V., &Maggiore, F. (2016). Oil refining spent catalysts: A review of possible recycling technologies. Resources, Conservation and Recycling, 108, 10–20.
    Furimsky, E. (1996). Spent refinery catalysts: Environment, safety and utilization. Catalysis Today, 30(4), 223–286.
    Gerber, M.A., Frye, J.G., Bowman, L.E., Fulton, J.L., Silva, L.J., Wai, C.M. (1999). Regeneration of Hydrotreating and FCC Catalysts, U.S. Department of Energy, Contract DE-AC06-76RL0 1830.
    Hamad, M. A., &Khattab, I. A. (1981). Effect of the combustion process on the structure of rice hull silica. Thermochimica Acta, 48(3), 343–349.
    Hiroshi FUKUMIZU, &Shigeru YOKOYAMA (2006). Study on a New Humidity Controlling Material Porous Soil "Allophane" - Design of Humidity Controlling Performance by Numerical Simulation -. Resources Processing, 62, 58–62.
    Hiroshi FUKUMIZU, Shigeru YOKOYAMA, &Kazuko KITAMURA, M. (2005). Study on a New Humidity Controlling Material Porous Soil "Allophane" - Design of Humidity Controlling Material -. Resources Processing, 52, 128–135.
    Hu, Z., Zheng, S., Jia, M., Dong, X., &Sun, Z. (2017). Preparation and characterization of novel diatomite/ground calcium carbonate composite humidity control material. Advanced Powder Technology, 28(5), 1372–1381.
    Hu, Z., Zheng, S., Tan, Y., &Jia, M. (2017). Preparation and characterization of diatomite/silica composite humidity control material by partial alkali dissolution. Materials Letters, 196, 234–237.
    Huang, C. H., &Wang, S. Y. (2013). Application of water treatment sludge in the manufacturing of lightweight aggregate. Construction and Building Materials, 43, 174–183.
    Huang, C. H., &Wang, S. Y. (2013). Application of water treatment sludge in the manufacturing of lightweight aggregate. Construction and Building Materials, 43, 174–183.
    IKEURA Mari, Ogura Daisuke, HOKOI Shuichi (2012). Influence of Hysteresis in Equilibrium Moisture Content on Buffering Indoor Humidity Variation : Part 2 Relationship between hygroscopic performance and hysteresis, Architectural Institute of Japan, 52, 113–116.
    Javed, S. H., Shah, F. H., &Mansha, M. (2011). Extraction of amorphous silica from wheat husk by using KMNO4. Journal of Faculty of Engineering & Technology, 18(92), 47–57.
    Kenjo, T. (1985). The use of Nikka pellets and Japanese tissue made plain. Museum Management and Curatorship, 4(1), 65–72.
    Konuklu, Y., Ersoy, O., &Gokce, O. (2015). Easy and industrially applicable impregnation process for preparation of diatomite-based phase change material nanocomposites for thermal energy storage. Applied Thermal Engineering, 91, 759–766.
    KUROKI Katsuichi, TASAKA Taichi (2007). Study on evaluation for performance of humidity control in the room by a sorption material. Japan Society for Finishings Technology, 71–74.
    L. Vidal, E. Joussein, M. Colas, J. Cornette, J. Sanz, I. Sobrados, J-L. Gelet, J. Absi, S. Rossignol. (2016). Controlling the reactivity of silicate solutions: A FTIR, Raman and NMR study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 503, 101–109.
    Lee, K. H., Noh, N. S., Shin, D. H., &Seo, Y. (2002). Comparison of plastic types for catalytic degradation of waste plastics into liquid product with spent FCC catalyst. Polymer Degradation and Stability, 78(3), 539–544.
    Lee, T. C., Lin, K. L., Su, X. W., &Lin, K. K. (2012). Recycling CMP sludge as a resource in concrete. Construction and Building Materials, 30, 243–251.
    Lesbayev, B. T., Nazhipkyzy, M., Prikhodko, N. G., Temirgaliyeva, T. S., Ustaeva, G. S., Nurgozhaeva, A., &Mansurov, Z. A. (2017). Creating of Anti-icing Coatings Based on Nanoscale Powders of Silicon Dioxide Obtained from Silicone Waste. Procedia Manufacturing, 12, 22–27.
    Lewis, E. R. (2006). The effect of surface tension (Kelvin effect) on the equilibrium radius of a hygroscopic aqueous aerosol particle. Journal of Aerosol Science, 37(11), 1605–1617.
    Li, C., Liu, H., Li, B., Cheng, Y., Du, C., &Sheng, A. (2017). Human responses to the air relative humidity ramps: A chamber study. Building and Environment, 123, 458–468.
    Lin, K. L., Lo, K. W., Hung, M. J., Cheng, T. W., &Chang, Y. M. (2017). Recycling of spent catalyst and waste sludge from industry to substitute raw materials in the preparation of Portland cement clinker. Sustainable Environment Research, 27(5), 251–257.
    Liu, L., Tan, S. (Johnathan), Horikawa, T., Do, D. D., Nicholson, D., &Liu, J. (2017). Water adsorption on carbon - A review. Advances in Colloid and Interface Science, 250, 64–78.
    Moreno, F., Rubio, M. C., Martinez-Echevarria, &M. J. (2011). Reuse of sludge from the decorative quartz industry in hot bituminous mixes. Construction and Building Materials, 25(5), 2465–2471.
    N.Pan, &P. Gibson. (2006). Thermal and moisture transport in fibrous materials. Woodhead Publishing Limited and CRC Press LLC.
    Nandi, V. S., Raupp-Pereira, F., Montedo, O. R. K., &Oliveira, A. P. N. (2015). The use of ceramic sludge and recycled glass to obtain engobes for manufacturing ceramic tiles. Journal of Cleaner Production, 86, 461–470.
    Ng, E. P., Awala, H., Tan, K. H., Adam, F., Retoux, R., &Mintova, S. (2015). EMT-type zeolite nanocrystals synthesized from rice husk. Microporous and Mesoporous Materials, 204(C), 204–209.
    Ohashi, F., Maeda, M., Inukai, K., Suzuki, M., &Tomura, S. (1999). Study on intelligent humidity control materials: water vapor adsorption properties of mesostructured silica derived from amorphous fumed silica. Journal of Materials Science, 34(6), 1341–1346.
    Pan, M., Mei, C., Du, J., &Li, G. (2014). Synergistic effect of nano silicon dioxide and ammonium polyphosphate on flame retardancy of wood fiber-polyethylene composites. Composites Part A: Applied Science and Manufacturing, 66, 128–134.
    Reinikainen, L. M., &Jaakkola, J. J. K. (2003). Significance of humidity and temperature on skin and upper airway symptoms. Indoor Air, 13(4), 344–352.
    Rodger Talbert (2008). Paint technology handbook. Taylor & Franics Group, ISBN 978-1-57444-703-3.
    Rodríguez, E. D., Bernal, S. A., Provis, J. L., Gehman, J. D., Monzó, J. M., Payá, J., &Borrachero, M. V. (2013). Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel, 109, 493–502.
    Sadeghbeigi, R. (2000). Fluid Catalytic Cracking Handbook.
    Sadeghbeigi, R. (2012). Fluid Catalytic Cracking Handbook. Fluid Catalytic Cracking Handbook.
    Shuichi HOKOI (2017). Moisture Research in the Field of Architecture, Japan. Journal of the Human-Environment System, 19(2), 35–47.
    Sing, K. S. W., &Williams, R. T. (2004). Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials. Adsorption Science & Technology, 22(10), 773–782.
    Sing, K. S. W., Everett, D. H., Haul, R. a. W., Moscou, L., Pierotti, R. a., Rouquérol, J., &Siemieniewska, T. (1982). International Union of Pure And Applied Chemistry, Reporting Physisorption data for Gas / Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure & Appl. Chem., 54(11), 2201–2218.
    Skinner, L. M., &Sambl, J. R. S. (1972). The kelvin equation - a review, Aerosol Science, 3, 199 - 210.
    Su, N., Chen, Z. H., &Fang, H. Y. (2001). Reuse of spent catalyst as fine aggregate in cement mortar. Cement and Concrete Composites, 23(1), 111–118.
    Sunwoo, Y., Chou, C., Takeshita, J., Murakami, M., &Tochihara, Y. (2006). Physiological and Subjective Responses to Low Relative Humidity in Young and Elderly Men. Journal of PHYSIOLOGICAL ANTHROPOLOGY, 25(3), 229–238.
    Unger, K. (1972). Structure of Porous Adsorbents. Angewandte Chemie International Edition in English, 11(4), 267–278.
    Volland, S., &Brötz, J. (2015). Lightweight aggregates produced from sand sludge and zeolitic rocks. Construction and Building Materials, 85, 22–29.
    Vu, D. H., Wang, K. S., Bac, B. H., &Nam, B. X. (2013). Humidity control materials prepared from diatomite and volcanic ash. Construction and Building Materials, 38, 1066–1072.
    Vu, D.-H., Wang, K.-S., &Bac, B. H. (2011). Humidity control porous ceramics prepared from waste and porous materials. Materials Letters, 65(6), 940–943.
    Wang, Y.-W., Kim, Y.-Y., Christenson, H. K., &Meldrum, F. C. (2012). A new precipitation pathway for calcium sulfate dihydrate (gypsum) via amorphous and hemihydrate intermediates. Chem. Commun., 48(4), 504–506.
    Wei, Y. L., &Ko, G. W. (2017). Recycling steel wastewater sludges as raw materials for preparing lightweight aggregates. Journal of Cleaner Production, 165, 905–916.
    Wu, M., Johannesson, B., &Geiker, M. (2014). Application of water vapor sorption measurements for porosity characterization of hardened cement pastes. Construction and Building Materials, 66, 621–633.
    Yang, H., Peng, Z., Zhou, Y., Zhao, F., Zhang, J., Cao, X., &Hu, Z. (2011). Preparation and performances of a novel intelligent humidity control composite material. Energy and Buildings, 43(2–3), 386–392.
    Ye, X., Kang, S., Wang, H., Li, H., Zhang, Y., Wang, G., &Zhao, H. (2015). Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils. Journal of Hazardous Materials, 289, 210–218.
    Yu, S., Cui, Y., &Feng, G. (2016). Research on Performance of Humidity-controlling Materials Based on E+. Procedia Engineering, 146, 318–326.
    Zhang, H., &Yoshino, H. (2010). Analysis of indoor humidity environment in Chinese residential buildings. Building and Environment, 45(10), 2132–2140.
    Zheng, J., Han, D., Ye, X., Wu, X., Wu, Y., Wang, Y., &Zhang, L. (2018). Chemical and physical interaction between silane coupling agent with long arms and silica and its effect on silica/natural rubber composites. Polymer (United Kingdom), 135, 200–210.
    Zheng, J., Shi, J., Ma, Q., Dai, X., &Chen, Z. (2017). Experimental study on humidity control performance of diatomite-based building materials. Applied Thermal Engineering, 114, 450–456.
    Zhou, B., Shi, J., &Chen, Z. qian. (2018). Experimental study on moisture migration process of zeolite-based composite humidity control material. Applied Thermal Engineering, 128, 604–613.
    一般財団法人建材試験センター,吸放湿試験,田坂 太一,2004。
    內政部建築研究所,高性能保水調濕水泥質材料之研發,2008。
    交通部中央氣象局,台灣過去50 - 100年的溫度、溼度、雨量、風等 氣象參數的統計及變化析資料,2010。
    交通部中央氣象局,臺灣氣候變化統計報告1897 - 2008,2009。
    行政院環境保護署,105年事業廢棄物申報量統計報告,2017。
    行政院環境保護署,污泥處理現況檢討及因應策略,2014。
    李雙安,多孔材料添加廢玻璃燒結調濕陶瓷之探討,國立中央大學環境工程研究所,碩士論文,2009。
    林育賢,廢白土污泥於水泥砂漿之工程性質研究,國立聯合大學土木與防災工程研究所,碩士論文,2013。
    島根県産業技術センター研究報告 第48號,各種建築材料の基本的吸放湿性能の評価,大畑 敬、河村 進,2012。
    程茂偉,以丙二醇甲醚製備壓克力系塗料的可行性和加入矽酸鹽系助劑對隔熱效果的探討,崑山科技大學進修部材料工程研究所,碩士論文,2013。
    黃雅蘭,廢白土污泥再利用於水泥混凝土之工程性質研究,國立聯合大學土木與防災工程研究所,碩士論文,2014。
    蔡定翰,牡蠣灰環保隔熱塗料之開發及熱特性之研究,明志科技大學環境與資源工程研究所,碩士論文,2013。

    無法下載圖示 校內:2023-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE