簡易檢索 / 詳目顯示

研究生: 楊敬緯
Yang, Ching-Wei
論文名稱: 基於複合生命週期產品碳足跡分析建立營建產品碳足跡係數資料庫:以道路工程為例
Establishing Construction Products' Carbon Footprint Database based on Hybrid Life Cycle Assessment Analysis: Example of Roadway Engineering
指導教授: 楊士賢
Yang, Shih-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 164
中文關鍵詞: 碳足跡資料庫複合生命週期評估分析道路工程
外文關鍵詞: Database, Life cycle assessment, Roadway engineering
相關次數: 點閱:123下載:45
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2021年第26屆聯合國氣候變遷大會 (Conference of the Parties 26, COP26)中,197個與會國家為了減緩氣候變遷之影響,共同通過《格拉斯哥氣候公約》,今年3月國發會正式公布「臺灣2050淨零排放路徑及策略總說明」,提供至2050年淨零之軌跡與行動路徑,就能源、產業、生活轉型政策預期增長的重要領域制定行動計畫,落實淨零轉型目標,而營建業貢獻的碳排放量佔國家整體約12.5%。然而若要量化營建工程碳足跡,現階段台灣之產品碳足跡資料庫如環保署的碳足跡資料庫中九百多筆資料中,營建相關產品僅約五十幾筆,無法滿足工程規劃設計過程模擬不同工程方案的需求,然而受限於製程盤查法的特性,需收集產品製程詳細數據,因此數據取得需花費相當的成本與時間,因此僅靠製程盤查方法勢必無法在有限時間下取得足夠的營建工程產品碳足跡係數用以提供營建工程低碳規劃設計,因此現階段我國營建產業急需一套在有限時間與資源下,能系統性量化營建工程產品碳足跡係數的分析架構。因此本研究之目的為建立營建產品複合生命週期分析方法及產品碳足跡資料庫架構。在建立複合生命週期分析方法部分,將我國105年產業關聯表,利用工業產銷存動態調查資料進行矩陣擴增,並透過對產業公會或產品製造商訪談,蒐集產品規格與原料組成資料,再結合擴增後的產業關聯表,並引用能源局公告之能源平衡資料及環保署之能源燃燒排放資料,及調查產品平均價格資料,研究中以預拌混凝土與PVC止水帶,計算出各規格產品之碳足跡,由結果顯示利用複合生命週期分析法計算預拌混凝土產品碳足跡與環保署基於盤查分析法之數據相距約為10%。並將數據結果結合公共工程編碼建置營建工程碳足跡產品資料庫,以利設計施工單位於設計階段量化工程碳足跡,並可於設計階段思考減碳方式,以回應台灣淨零排放之需求。

    In the 26th UN Climate Change Conference (COP26) in 2022, 197 participating countries jointly adopted the Glasgow Climate Pact to mitigate the impact of climate change and control the global temperature rise by 2℃. In Taiwan, National Development Council announced Taiwan's 2050 Net-Zero Emission Path and Strategies roadmap in March to formulate action plans for net-zero transformation policies in the energy, industry, and life areas. Among all the industries, the building and construction industry contributes significant carbon emissions annually. Therefore, quantifying the construction industry's carbon footprint is an essential step toward Nation's net zero emissions goal.
    Lots of materials and products are used in construction engineering; however, limited product carbon footprint data are available. In Taiwan, Environmental Protection Agency's (EPA) carbon footprint database has only about fifty construction-related products out of 900s products in the database, which cannot support the goal of finding low carbon practices in the engineering design and construction planning process. Currently, the primary approach to obtaining a product's carbon footprint information is via process-based inventory analysis, a costly and timely process prohibiting fast and messy scale to generating a product's carbon footprint information.
    Therefore, this study aims to propose a hybrid life cycle assessment framework to quantify construction-related products' carbon footprint and establish a "Construction Products Carbon Footprint Database" to support the planning and design of low roadway engineering.

    摘要I ABSTRACTII 表目錄XI 圖目錄XIII 第一章 緒論1 1.1研究背景與動機1 1.2研究目的4 1.3研究方法與步驟4 1.4研究限制6 第二章 文獻回顧8 2.1生命週期評估8 2.1.1生命週期評估國際標準8 2.1.2 產品碳足跡國際標準10 2.2生命週期盤查(LIFE CYCLE INVENTORY, LCI)13 2.2.1製程分析法(process-based analysis)14 2.2.2投入產出法(Input-output-based analysis)16 2.2.3複合分析法(Hybrid analysis method)17 2.2.4生命週期盤查分析法比較20 2.3國內外現有LCA資料庫21 2.3.1基於製程分析法(process-based analysis)之資料庫22 2.3.2應用投入產出法(Input-output-based analysis)之資料庫24 2.3.3應用複合分析法(Hybrid analysis method)之資料庫24 2.4編碼與技術描述關係25 2.4.1MasterFormat架構與演進25 2.4.2台灣公共工程工項編碼26 2.4.3CSI:Masterformat與台灣公共工程編碼連結關係27 第三章 投入產出複合生命週期分析法30 3.1評估邊界與流程30 3.1.1評估邊界30 3.1.2評估流程31 3.2生命週期投入產出盤查分析原理32 3.2.1基礎理論與假設33 3.2.2投入產出表分解37 3.2.3能源平衡表對照40 3.3產品碳足跡計算42 3.3.1各產業CO₂乘數計算42 3.3.2運輸階段碳排放計算44 3.3.3產品碳足跡計算46 第四章 生命週期盤查分析資料庫48 4.1 資料庫特徵分析48 4.1.1以特徵分析國內外資料庫欄位設計48 4.1.2資料庫套用特徵分析結果彙整54 4.2營建產品碳足跡資料庫架構57 4.2.1營建產品碳足跡資料庫欄位選用57 4.2.2資料庫邏輯架構61 4.3資料庫資訊展示65 4.3.1產品基本資訊資料表65 4.3.2碳足跡相關資料表應用70 第五章 產品分析77 5.1預拌混凝土77 5.1.1分解依據77 5.1.2 CO₂乘數計算78 5.1.3預拌混凝土產品碳足跡計算82 5.2止水帶87 5.2.1分解依據87 5.2.2 CO₂乘數計算88 5.2.3止水帶各規格之組成與計算90 5.3碳足跡結果差異分析95 5.3.1環保署預拌混凝土資料95 5.3.2本研究數據與環保署資料比較98 第六章 結論與建議104 6.1結論104 6.2建議106 參考文獻108 附錄一116 附錄二127 附錄三135 附錄四149

    英文文獻
    1. Alsaffar, A., K. Haapala, K.-Y. Kim and G. Kremer (2012). A Process-Based Approach for Cradle-to-Gate Energy and Carbon Footprint Reduction in Product Design.
    2. Bullard, C. W., P. S. Penner and D. A. Pilati (1978). "Net energy analysis: Handbook for combining process and input-output analysis." Resources and energy 1(3): 267-313.
    3. Cass, D. and A. Mukherjee (2011). "Calculation of greenhouse gas emissions for highway construction operations by using a hybrid life-cycle assessment approach: case study for pavement operations." Journal of Construction Engineering and Management 137(11): 1015-1025.
    4. Dietzenbacher, E., M. Lenzen, B. Los, D. Guan, M. L. Lahr, F. Sancho, S. Suh and C. Yang (2013). "INPUT–OUTPUT ANALYSIS: THE NEXT 25 YEARS." Economic Systems Research 25(4): 369-389.
    5. Dong, H., Y. Geng, F. Xi and T. Fujita (2013). "Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach." Energy Policy 57: 298-307.
    6. Ercan, T. and O. Tatari (2015). "A hybrid life cycle assessment of public transportation buses with alternative fuel options." The International Journal of Life Cycle Assessment 20(9): 1213-1231.
    7. Faturay, F., V. S. G. Vunnava, M. Lenzen and S. Singh (2020). "Using a new USA multi-region input output (MRIO) model for assessing economic and energy impacts of wind energy expansion in USA." Applied Energy 261: 114141.
    8. Fenner, A. E., C. J. Kibert, J. Woo, S. Morque, M. Razkenari, H. Hakim and X. Lu (2018). "The carbon footprint of buildings: A review of methodologies and applications." Renewable and Sustainable Energy Reviews 94: 1142-1152.
    9. Frischknecht, R., N. Jungbluth, H.-J. Althaus, G. Doka, R. Dones, T. Heck, S. Hellweg, R. Hischier, T. Nemecek and G. Rebitzer (2005). "The ecoinvent database: overview and methodological framework (7 pp)." The international journal of life cycle assessment 10(1): 3-9.
    10. Grant, T. (2016). AusLCI database manual, Australian Life Cycle Assessment Society (ALCAS).
    11. Guo, J., Y.-J. Zhang and K.-B. Zhang (2018). "The key sectors for energy conservation and carbon emissions reduction in China: Evidence from the input-output method." Journal of Cleaner Production 179: 180-190.
    12. Guezuraga, B., Zauner, R., & Pölz, W. (2012). Life cycle assessment of two different 2 MW class wind turbines. Renewable Energy, 37(1), 37-44.
    13. Hertwich, E. G. and G. P. Peters (2009). "Carbon Footprint of Nations: A Global, Trade-Linked Analysis." Environmental Science & Technology 43(16): 6414-6420.
    14. Hondo, H., S. Sakai and S. Tanno (2002). "Sensitivity analysis of total CO₂ emission intensities estimated using an input–output table." Applied Energy 72(3): 689-704.
    15. Hou, D., A. Al-Tabbaa, P. Guthrie, J. Hellings and Q. Gu (2014). "Using a hybrid LCA method to evaluate the sustainability of sediment remediation at the London Olympic Park." Journal of Cleaner Production 83: 87-95.
    16. Ingwersen, W. W., M. Li, B. Young, J. Vendries and C. Birney (2022). "USEEIO v2. 0, The US Environmentally-Extended Input-Output Model v2. 0." Scientific Data 9(1): 1-24.
    17. Jiang, T., Y. Yu, A. Jahanger and D. Balsalobre-Lorente (2022). "Structural emissions reduction of China's power and heating industry under the goal of “double carbon”: A perspective from input-output analysis." Sustainable Production and Consumption 31: 346-356.
    18. Lenzen, M., A. Geschke, A. Malik, J. Fry, J. Lane, T. Wiedmann, S. Kenway, K. Hoang and A. Cadogan-Cowper (2017). "New multi-regional input–output databases for Australia – enabling timely and flexible regional analysis." Economic Systems Research 29(2): 275-295.
    19. Leontief, W. W. (1936). "Quantitative input and output relations in the economic systems of the United States." The review of economic statistics: 105-125.
    20. Luo, Z., Y. Cang, N. Zhang, L. Yang and J. Liu (2019). "A Quantitative Process-Based Inventory Study on Material Embodied Carbon Emissions of Residential, Office, and Commercial Buildings in China." Journal of Thermal Science 28.
    21. Longo, S., Mistretta, M., & Cellura, M. (2012). Life Cycle Assessment (LCA) of protected crops: an Italian case study.
    22. Martínez-Rocamora, A., J. Solís-Guzmán and M. Marrero (2016). "LCA databases focused on construction materials: A review." Renewable and Sustainable Energy Reviews 58: 565-573.
    23. Miller, R. E. and P. D. Blair (2009). Input-output analysis: foundations and extensions, Cambridge university press.
    24. Minx, J. C., T. Wiedmann, R. Wood, G. P. Peters, M. Lenzen, A. Owen, K. Scott, J. Barrett, K. Hubacek, G. Baiocchi, A. Paul, E. Dawkins, J. Briggs, D. Guan, S. Suh and F. Ackerman (2009). "INPUT–OUTPUT ANALYSIS AND CARBON FOOTPRINTING: AN OVERVIEW OF APPLICATIONS." Economic Systems Research 21(3): 187-216.
    25. Ochoa, L., C. Hendrickson and H. S. Matthews (2002). "Economic input-output life-cycle assessment of US residential buildings." Journal of infrastructure systems 8(4): 132-138.
    26. Okadera, T., Geng, Y., Fujita, T., Dong, H., Liu, Z., Yoshida, N., & Kanazawa, T. (2015). Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach. Energy Policy, 78, 148-157.
    27. Prézélus, F., L. Tiruta-Barna, J.-C. Remigy and C. Guigui (2021). "Process-based LCA of ultrafiltration for drinking water production." Water Research 199: 117156.
    28. Pierer, M., Winiwarter, W., Leach, A. M., & Galloway, J. N. (2014). The nitrogen footprint of food products and general consumption patterns in Austria.Food Policy, 49, 128-136. doi: https://doi.org/10.1016/j.foodpol.2014.07.004
    29. Rodríguez-Alloza, A. M., A. Malik, M. Lenzen and J. Gallego (2015). "Hybrid input–output life cycle assessment of warm mix asphalt mixtures." Journal of Cleaner Production 90: 171-182.
    30. Smith, P., L. Beaumont, C. J. Bernacchi, M. Byrne, W. Cheung, R. T. Conant, F. Cotrufo, X. Feng, I. Janssens and H. Jones (2022). "Essential outcomes for COP26." Global change biology 28(1): 1-3.
    31. Suh, S. and G. Huppes (2005). "Methods for Life Cycle Inventory of a product." Journal of Cleaner Production 13(7): 687-697.
    32. Teh, S. H., T. Wiedmann, J. Schinabeck and S. Moore (2017). "Replacement scenarios for construction materials based on economy-wide hybrid LCA." Procedia Engineering 180: 179-189.
    33. UNEP (2021). Infrastructure for Climate Action.
    34. Wiedmann, T., S. H. Teh and M. Yu (2019). "ICM Database–Integrated Carbon Metrics Embodied Carbon Life Cycle Inventory Database." University of New South Wales: Kensington, Australia.
    35. Yang, J., Y. Chang, L. Zhang, Y. Hao, Q. Yan and C. Wang (2018). "The life-cycle energy and environmental emissions of a typical offshore wind farm in China." Journal of Cleaner Production 180: 316-324.
    36. Yang, Y., W. W. Ingwersen, T. R. Hawkins, M. Srocka and D. E. Meyer (2017). "USEEIO: A new and transparent United States environmentally-extended input-output model." Journal of Cleaner Production 158: 308-318.
    37. Yu, M., M. Robati, P. Oldfield, T. Wiedmann, R. Crawford, A. A. Nezhad and D. Carmichael (2020). "The impact of value engineering on embodied greenhouse gas emissions in the built environment: A hybrid life cycle assessment." Building and Environment 168: 106452.
    38. Yu, M. and T. Wiedmann (2018). "Implementing hybrid LCA routines in an input–output virtual laboratory." Journal of Economic Structures 7(1): 1-24.
    39. Zhang, S., B. Pang and Z. Zhang (2015). "Carbon footprint analysis of two different types of hydropower schemes: comparing earth-rockfill dams and concrete gravity dams using hybrid life cycle assessment." Journal of Cleaner Production 103: 854-862.
    40. Zhou, T. (2021). "New physical science behind climate change: What does IPCC AR6 tell us?" The Innovation 2(4).
    41. Zhang, Y., Yan, D., Hu, S., & Guo, S. (2019). Modelling of energy consumption and carbon emission from the building construction sector in China, a process-based LCA approach. Energy Policy, 134, 110949. doi: https://doi.org/10.1016/j.enpol.2019.110949
    中文文獻
    1. 王塗發(1986),投入產出分析及其應用—台灣地區實證研究,台灣銀行季刊,37(1),186-218。
    2. 行政院環保署(2013),碳足跡數據品質手冊,第二版。
    3. 交通部公路總局(2017),台九線蘇花公路山區路段改善計畫施工期間工程碳管理委託服務工作106年年中進度報告書。
    4. 交通部統計處(2017),2016年汽車貨運調查報告。
    5. 交通部統計處(2021),2020年汽車貨運調查報告。
    6. 行政院環保署(2017c),中華民國國家溫室氣體排放清冊報告。
    7. 行政院環保署(2019),溫室氣體排放係數管理表6.0.4版。
    8. 行政院環境保護署 (2021),中華民國國家溫室氣體清冊報告,2021年版。
    9. 內政部營建署(2021),精進市區綠道路評估系統之碳足跡指標評估作法期中報告書。
    10. 行政院環保署(2022)。溫室氣體排放量盤查作業指引。
    11. 行政院環保署。產品碳足跡資訊網。檢自:https://cfp-calculate.tw/cfpc/WebPage/LoginPage.aspx
    12. 行政院公共工程委員會(2013),應用公共工程經費電腦估價系統(PCCES)架構估算工程二氧化碳排放量委託研究案成果報告。
    13. 行政院公共工程委員會,綱要規範及編碼文件下載,https://pcces.pcc.gov.tw/csi/Default.aspx?FunID=Fun_9_3&SearchType=B。
    14. 經濟部國際貿易局 (2021). 國際鏈結之企業碳足跡指引. 第一版.
    15. 吳冠伋 (2018). 開發設計導向之永續運輸基礎設施管理(STIM)碳足跡評估工具-公路橋梁系統. 碩士, 國立成功大學.
    16. 岳含潤與楊士賢. (2022). 基於矩陣擴增法發展營建材料碳足跡分析架構-以瀝青混凝土材料為例. 鋪面工程 20(1).
    17. 李炳崑 (2014). 水泥業二氧化碳排放趨勢及投入產出結合生命週期評估之研究. 碩士, 國立成功大學.
    18. 林素貞與張翊峰 (1995). "以投入產出分析產業能源耗用與污染排放量之關聯性-以 1991 年臺灣地區為例." 能源季刊 25(4): 52-74.
    19. 林憲德 (2015). 建築產業碳足跡-建築、景觀、室內裝修的碳管理策略. 臺北市, 詹氏書局.
    20. 林憲德, 蔡耀賢與楊詩弘 (2019). "建築材料碳足跡資料系統建置之研究."
    21. 邱柏凱與楊士賢 (2020). 利用複合生命週期評估建立台灣道路工程材料碳足跡計算架構. 鋪面工程 18(4): 13-25.
    22. 翁以欣 (2015). 台灣建材碳足跡資料庫盤查方法之研究. 碩士, 國立成功大學.
    23. 張又升 (2002). 建築物生命週期二氧化碳減量評估. 博士, 國立成功大學.
    24. 楊士賢, 張芳綺, 林俊豪, 劉彥宏與賴明煌 (2017). "盤查台灣地區熱拌瀝青混凝土產品於生產與鋪築階段之能源消耗與環境衝擊." 鋪面工程 15(2): 51-58.
    25. 經濟部國際貿易局 (2021). 國際鏈結之企業碳足跡指引. 第一版.
    26. 劉育成 (2013). 生命週期評估應用於地下管推工法施工階段之碳盤查及其減碳策略. 碩士, 國立臺北科技大學.
    27. 盧怡靜 (2003). 台灣地區工業部門能源消費與污染物排放關聯分析. 碩士, 國立成功大學.
    28. 陳芃瑀 (2015). PCCES系統整合建築碳足跡資料庫方法之研究. 碩士,國立成功大學.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE