| 研究生: |
陳泯寬 Chen, Min-Kuan |
|---|---|
| 論文名稱: |
富勒烯次結構的高曲度碗形芳香烴之合成與分析 Synthesis and Analysis of Highly Curved Bowl-Shaped Fragments of Fullerenes |
| 指導教授: |
吳耀庭
Wu, Yao-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 真空熱裂解法 、分子碗 、荧蒽化合物 、富勒烯 、鈀 |
| 外文關鍵詞: | FVP, Buckybowl, Fluoranthene, Fullerene, Palladium |
| 相關次數: | 點閱:103 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文希望以簡單的合成方式,在溫和及液相的反應條件下,製備出富勒烯的碗形次結構,取代以往的真空熱裂解法(FVP)。傳統的真空熱裂解法擁有許多缺點,包括低官能基容忍度、低產率且只適用於微量反應系統。為了改善上述缺點,本研究將藉由過渡金屬催化方式,來合成高曲度碗形芳香族化合物。
平面態的荧蒽前驅物33、34、36、42與43在鈀金屬的催化下,進行環合反應,合成出富勒烯C60及C70的次結構,即碗形化合物2731。本研究之碗形化合物27、28、30與31,其結構皆藉由X-ray單晶繞射分析得知。由晶體結構解析,本研究中的分子碗擁有相當高的曲度及深度,在目前已知文獻中相當少見。此外,在碗形反轉動力學中,分子碗27、28、30與31的反轉途徑可分為兩種,其中一種為經由中間平面態;另一種則是經由S型過渡態反轉。最後,利用高效能液相層析儀搭配掌性分離管柱,也成功地發現具掌性的分子碗29的訊號。
The main goal of this research is using a simple synthetic method for the preparation of highly curved bowl-shaped fragments of fullerenes. Several decades ago, FVP was widely used for the synthesis of buckybowls, but there were several limitations. Compared with traditional FVP, metal-catalyzed bond formation is under mild condition and in solution phase. Herein, we hope to synthesis buckybowls by utilizing palladium-catalyzed reactions.
Highly curved buckybowls 2731 were synthesized from fluoranthene derivatives by using straightforward palladium-catalyzed cyclization reactions. Buckybowls 2729 are fragments of C60, whereas 30 and 31 are unique subunits of C70. The curved structures have been identified by X-ray crystallography, and they have large bowl depths. The maximum POAV pyramidalization angle in both 27 and 28 was 12.8º. Such high curvature is very rarely obtained. The chiral resolution of mono-substituted buckybowl 29 by chiral HPLC was also investigated.
1. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
2. Iijima, S. Nature 1991, 354, 56.
3. Dresselhaus, M. D.; Avouris, P. Carbon Nanotubes: Synthesis, Structure Properties and Application (Ed.: Dresselhaus, M. D.; Dresselhaus, R. S.; Avouris, P.), Springer, Heidelberg, 2001.
4. (a) Fort, E. H.; Donovan, P. M.; Scott, L. T. J. Am. Chem. Soc. 2009, 131, 16006. (b) Fort, E. H.; Scott, L. T. Tetrahedron Lett. 2011, 52, 2051. (c) Fort, E. H.; Scott, L. T. J. Mater. Chem. 2011, 21, 1373. (d) Fort, E. H.; Scott, L. T. Angew. Chem. 2010, 122, 6776; Angew. Chem. Int. Ed. 2010, 49, 6626.
5. Beck, A.; Bleicher, M. N.; Crowe, D. W. Excursions into Mathematics; Worth, New York, 1969.
6. (a) Sygula, A. Eur. J. Org. Chem. 2011, 1611. (b) Tsefrikas, V. M.; Scott, L. T. Chem. Rev. 2006, 106, 4868. (c) Wu, Y. T.; Siegel, J. S. Chem. Rev 2006, 106, 4843. (d) Sygula, A.; Rabideau, P. W. Carbon-Rich Compounds: From Molecules to Materials (Eds.: Haley, M.; Tykwinski, R.), Willey-VCH, Weinheim, 2006, p529.
7. (a) Sakurai, H.; Daiko, T.; Hirao, T. Science 2003, 1878. (b) Higashibayashi, S.; Sakurai, H. Chem. Lett. 2011, 40, 122. (c) Amaya, T.; Hirao, T. Chem. Commun. 2011, 47, 10524.
8. (a) Barth, W. E. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 1966. (b) Barth, W. E.; Lawton, R. G. J. Am. Chem. Soc. 1966, 88, 380. (c) Barth, W. E.; Lawton, R. G. J. Am. Chem. Soc. 1971, 93, 1730.
9. (a) Scott, L. T.; Hashemi, M. M.; Meyer, D. T.; Warren, H. B. J. Am. Chem. Soc. 1991, 113, 7082. (b) Knölker, H. J.; Braier, A.; Bröcher, D. J.; Jones, P. G.; Piotrowski, H. Tetrahedron Lett. 1999, 40, 8075. (c) Scott, L. T.; Cheng, P. C.; Hashemi, M. M.; Bratcher,M. S.; Meyer, D. T.; Warren, H. B. J. Am. Chem. Soc. 1997, 119, 10963. (d) Scott, L. T.; Hashemi, M. M.; Bratcher, M. S. J. Am. Chem. Soc. 1992, 114, 1920. (e) Borchardt, A.; Fuchicello, A.; Kilway, K. V.; Baldridge, K. K.; Siegel, J. S. J. Am. Chem. Soc. 1992, 114, 1921.
10. Reisch, H. A.; Bratcher, M. S.; Scott, L. T. Org. Lett. 2000, 2, 1427.
11. (a) Seiders, T. J.; Baldridge, K. K.; Siegel, J. S. J. Am. Chem. Soc. 1996, 118, 2754. (b) Sygula, A.; Rabideau, P. W. J. Am. Chem. Soc. 1999, 121, 7800. (c) Seiders, T. J.; Elliott, E. L.; Grube, G. H.; Siegel, J. S. J. Am. Chem. Soc. 1999, 121, 7804.
12. (a) Sygula, A.; Rabideau, P. W. J. Am. Chem. Soc. 2000, 122, 6323. (b) Xu, G.; Sygula, A.; Marcinow, Z.; Rabideau, P. W. Tetrahedron Lett. 2000, 41, 9931. (c) Sygula, A.; Xu, G.; Marcinow, Z.; Rabideau, P. W. Tetrahedron 2001, 57, 3637.
13. Mehta, G.; Shahk, S. R.; Ravikumarc, K. J. Chem. Soc., Chem. Commun. 1993, 1006.
14. (a) Scott, L. T.; Bratcher, M. S.; Hagen, S. J. Am. Chem. Soc. 1996, 118, 8743. (b) Ansems, R. B. M.; Scott, L. T. J. Am. Chem. Soc. 2000, 122, 2719. (c) Forkey, D. M.; Attar, S.; Noll, B. C.; Koerner, R.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 1997, 119, 5766.
15. (a) Abdourazak, A. H.; Marcinow, Z.; Sygula, A.; Sygula, R.; Rabideau, P. W. J. Am. Chem. Soc. 1995, 117, 6410. (b) Hagen, S.; Bratcher, M. S.; Erickson, M. S.; Zimmermann, G.; Scott, L. T. Angew. Chem., Int. Ed. 1997, 36, 406.
16. Scott, L. T.; Jackson, E. A.; Zhang, Q.; Steinberg, B. D.; Bancu, M.; Li, B. J. Am. Chem. Soc. 2012, 134, 107.
17. Baldridge, K. K.; Siegel, J. S. Theoret. Chem. Acc. 1997, 97, 67.
18. Seiders, T. J.; Baldridge, K. K.; Grube, G. H.; Siegel, J. S. J. Am. Chem. Soc. 2001, 123, 517.
19. Wu, T. C.; Hsin, H. J.; Kuo, M. Y.; Li, C. H.; Wu, Y. T. J. Am. Chem. Soc. 2011, 133, 16319.
20. For reviews for higher fullerenes, see: (a) Fowler, P. W.; Manolopoulos, D. E. An Atlas of Fullerenes, Dover Publications, Mineola, 2006. (b) Thilgen, C.; Herrmann, A.; Diederich, F. Angew. Chem. 1997, 109, 2362; Angew. Chem. Int. Ed. Ed. 1997, 36, 2268. (c) Taylor, R. J. Chem. Soc. Perkin Trans. 2 1993, 813.
21. Kung, Y. H.; Cheng, Y. S.; Tai, C. C.; Liu, W. S.; Shin, C. C.; Ma, C. C.; Tsai, Y. C.; Wu, T. C.; Kuo, M. Y.; Wu, Y. T. Chem. Eur. J. 2010, 16, 5909.
22. (a) Wu, Y. T.; Linden, A.; Siegel, J. S. Org. Lett. 2005, 7, 4353. (b) Wu, Y. T.; Hayama, T.; Baldridge, K. K.; Linden, A.; Siegel, J. S. J. Am. Chem. Soc. 2006, 128, 6870.
23. Petrukhina, M. A.; Andreini, K. W.; Mack, J.; Scott, L. T. J. Org. Chem. 2005, 70, 5713.
24. Sakurai, H.; Daiko, T.; Sakane, H.; Amaya, T.; Hirao, T. J. Am. Chem. Soc. 2005, 127, 11580.
25. (a) Haddon, R. C.; Scott, L. T. Pure Appl. Chem. 1986, 58, 137. (b) Haddon, R. C. Acc. Chem. Res. 1988, 21, 243. (c) Haddon, R. C. J. Am. Chem. Soc. 1990, 112, 3385. (d) Haddon, R. C. Science 1993, 261, 1545.
26. The crystal structure of Acecorannulene has not yet been determined. Theoretical DFT studies calculated at Becke3LYP/3-21G level incdicated the bowl depth of 1.114 Å, see: Marcinow, Z.; Sygula, A.; Ellern, A.; Rabideau, P. W. Org. Lett. 2001, 3, 3527.
27. Sygula, A.; Abdourazak, A. H.; Rabideau, P. W. J. Am. Chem. Soc. 1996, 118, 339.
28. Amaya, T.; Sakane, H.; Muneishi, T.; Hirao, T. Chem. Commun. 2008, 765.
29. (a) Pauling, L. The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, 1960. According to the Zefirov’s definition, the sum of van der Waals radii of two carbon atoms is 3.42 Å, see: (b) Zefirov, Y. V. Crystallogr. Rep. 1997, 42, 111.
30. Wu, T. C.; Chen, M. K.; Lee, Y. W.; Kuo, M. Y.; Wu, Y. T. Angew. Chem. Int. Ed. 2013, 52, 1289.
31. Wegner, H. A.; Reisch, H.; Rauch, K.; Demeter, A.; Zachariasse, K. A.; de Meijere, A.; Scott, L. T. J. Org. Chem. 2006, 71, 9080.
32. Slanina, Z.; Rudzinski, J. M.; Togasi, M.; Osawa, E. J. Mol. Struct. 1989, 202, 169.
33. Krygowski, T. M.; Cyranski, M.; Ciesielski, A.; Swirska, B.; Leszczynski, P. J. Chem. Inf. Comput. Sci. 1996, 36, 1135.
34. Rabideau, P. W.; Abdourazak, A. H.; Folsom, H. E.; Marcinow, Z.; Sygula, A.; Sygula, R. J. Am. Chem. Soc. 1994, 116, 7891.