| 研究生: |
吳惠榮 Wu, Hui-Yung |
|---|---|
| 論文名稱: |
光纖多工生化感測系統之研發與血糖病變監測 Development of Fiber-Optic Based Multi-Functional Biochemical Sensors for Blood Glucose Monitoring |
| 指導教授: |
賴新一
Lai, Hsin-Yi Steven |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 221 |
| 中文關鍵詞: | 螢光法 、溶膠凝膠法 、光纖多工生化感測器 、漸衰波理論 |
| 外文關鍵詞: | fluorescence method, sol-gel method, evanescent wave thoery, fiber-optic based multi-functional biosensors |
| 相關次數: | 點閱:92 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於光纖的反應速度快且靈敏度高,已被廣泛應用於各種不同的工程領域。但在生化科技領域中利用光纖進行實測的文獻卻不多,雖有少數幾位學者曾從事光纖生化感測分析,但也只是量測單一元素為主。醫學上實際進行病情的研判,通常需要知道體液中多種成份的含量。利用單工多重量測,手續顯得相當繁瑣,且易受時空環境干擾,待測成份的交互作用,儀器的校準等因素,常使得量測的結果不甚理想。有鑑於此本研究改採光纖鍍膜式的生化感測元件並聯,以取得多工快速且靈敏度高,抗腐蝕性佳的方法。使用光纖感測器得以多工量測成份複雜的生化元素,外加光纖可攜頻寬,感測薄膜置換方便,且易於多工感測,可大量改善生化感測及分析的成效,有利於檢體之量測及病情之推估。
本文首先建立一套多工量測之理論模型與估算步驟。利用Maxwell理論估算感測前光強度理論值,並透過光纖漸衰波理論估算感測後光強度理論值,再由感測前後光強度變化推估待測物之濃度,以螢光感測理論建構葡萄糖濃度、pH值與待測物濃度間之關係,建構出一套完整的理論模型。其次,利用上述所建構之理論模型,分別以樣本液體混成子系統、光纖生化感測子系統、資料擷取分析子系統等三大子系統,架設一套完整的光纖生化多工實測系統。待測檢體經過樣本液體混成子系統混成後,接著注入光纖感測子系統之感測槽,系統中二極體光源之藍光,經過濾光鏡可濾出增加感測靈敏度之光源波長,此光波經過光纖上之敏感鍍膜,其光強度變化率可以鑑別生化成份之不同種類與其濃度。資料擷取分析子系統其將所測得之感測訊號加以分析處理,求得生化成份種類之靈敏係數,藉此靈敏曲線可進行生化成份之鑑別及其濃度估算。
為印證本文所提出理論之正確性及實驗流程的可行性,本文除了採用自調配溶液以比對可靠度之外,更將結果應用於葡萄糖濃度及酸鹼值之檢測以推估可能病情。結果雖仍有改善空間,但也相當令人滿意了。
Optical-fiber sensors been applied in many different of engineering fields in recent years since they possess merits of fast response and high sensitivity. The traditional optical fiber sensors are seldom applied to biochemical field. Although there are few researchers that ha applied optical fiber sensors for the biochemical analysis. The applications are limited to the measurement of one single ingredient of the mixture. In general, a doctor can only come up with praises diagnosis via multiple symptom sensing for human body or form body fluids. In addition to many merits of fast response, high sensitivity and good corrosion resistance to in complex biochemical environment. Optical fiber sensors are easy to be implemented for multi-functional applications. It possesses wide carry bandwidth and convenience for coated fiber changes. In view of that, the aim of this research is to develop a multi-functional optical fiber biochemical sensing system that can be applied to detect the ingredients and related concentration in the blood of biochemical objects.
In order to achieve the preset goals, it is necessary for us to come up with a comprehensive analytical model. This can only be accomplished by integrating the evanescent wave theorem, the refractive index variation method and the fluorescence sensing method altogether. By employing the model thus develop the ingredients and related concentrations of biochemical substances can then be analytically estimated. In order to verify the feasibility of analytical model, optical fiber based multi-function biochemical sensors are constructed. The constructed sensing system possesses three subsystems including the mixture sample subsystem, the optical fiber biochemical sensing subsystem and the data acquisition and analysis subsystem. The sample be mixed by the mixture sample subsystem. The optical fiber biochemical sense subsystem is a device that is constructed by coating the advent-sensitive elements to the fiber surfaces and then used to interact with the ingredients in the mixture solutions. Light source is the device in which the blue light from a emitting diode is used the filter then constructed and used to filter the light to the needed wavelength and thus to enhance the sensitivity of the sensors. By so doing, the type and the concentrations of each ingredient in biochemical substance can be detected and estimated.
The data acquisition and analysis subsystem is a device identifies the functional relation between sample concentrations and light intensity variations. The concentrations of glucose and pH in the blood to be selected for use in this project verify the proposed approach and the model. The results are satisfactory.
1.Otto, S.W., “Fiber Optic Chemical Sensors and Biosensors,” Vols. 1 and 2, CRC Press, Boca Raton, FL, 1991.
2.Wang, J., “Electroanalysis and Biosensors,” Anal. Chem., Vol. 63, pp. 235R-237R, 1991.
3.Wang, J. Angnes, L., “Miniaturized Glucose Sensor Based on Electrochemical Codeposition of Rhodium and Glucose Oxidase onto Carbon-Fiber Electrodes,” Anal. Chem., Vol. 64, pp. 456-459, 1992.
4.Ammon, H.P.T., Ege, W., Oppermann, M., Gopel, W., Eisele, S., “Improvement in the Long-Term Stability of an Amperometric Glucose Sensor System by Introducing a Cellulose Membrane of Bacterial Origin,” Anal. Chem., Vol. 67, pp. 466-471, 1995.
5.Tranowski, D.J., Bekos, E.J., Koreniewski, C., “Oxygen Transport Characteristics of Refuctionalized Fluoropolymetric Membrances and Their Application in the Design of Biosensors Based upon the Clark-Type Oxygen Probe,” Anal. Chem., vol. 67, pp. 1546-1552, 1995.
6.Malitesa, C., Anzai, F., Osa, T., “Glucose Fast-Response Amperometric Sensor Based on Glucose Oxidase Immobilized in an Electropolymerized Poly(o-phenylenediamine)Film,” Anal. Chem., Vol. 62, pp. 2735-2740, 1990.
7.Moussy, F., Harrison, D.J., O’Brien, D.W., Rajotte, R.V., “Performance of Subcutaneously Implanted Needle-Type Glucose Sensors Employing a Novel Trilayer Coating. Anal. Chem. Vol. 65, pp. 2072-2077, 1993.
8.Clark, G.L., Lyons, C.A., Ann. N. Y. Acad. Sci, Vol. 102, pp. 29-45, 1962.
9.Updike, S.J., Hicks, G.P., Nature(London), Vol. 214, p.986, 1967.
10.Cote’, G.L., Fox, M.D., Northrop, R.B., “Optical Polarimetric Sensor For Blood Glucose Measurement,” IEEE, pp 101-102, 1990.
11.Soller, B.R., “Design of Intravascular Fiber Optic Blood Gas Sensor,” Engineering in Medicine and Biology, pp. 327-335, 1994.
12.Matsumoto, K., Minamitani, H., Kim, K., Yamamoto, T., Sasaki, K., “Characteristics of Optical Waveguide Type Glucose Sensor,” IEEE, pp. 2288-2289, 1997.
13.Seitz, W.R., “Chemical Snsors Based on Fiber Optics,” Anal. Chem., Vol. 56, p. 16A, 1984.
14.Peterson, J.I., Vurek, G.G., “Fiber-Optic Sensors for Biomedical Applications,” Science, Vol.224, pp.123-127, 1984.
15.Borman, S., “Optodes,” Anal. Chem., Vol. 53, pp. 1616A-1618A, 1986.
16.Gehrich, J.L., Lubbers, D.W., Opitz, N., Hansmann, D.R., Miller, W.W., Tusa, J.K., Yafuso, M., “Optical Fluorescence and Its Application to An Intravascular Blood Gas Monitoring System,” IEEE Trans. BioMed. Eng., Vol. 33, pp. 117-132, 1986.
17.Peterson, J.I., Goldstein, S.R., Fitzgerald, R.V., Buckhold, D.K., “A Fiber Optic pH Probe for Physiological Use,” Anal. Chem., Vol. 52, pp. 864-869, 1980.
18.Rollins, M., Xu, Z., Alcala, R., Izatt, J.A., “A Novel Wide Range Single Fiber Optic Fluorescence pH Sensor,” CLEO, pp. 183, 1997.
19.Gupta, B.D., Sharma, D.K., “Evanescent Wave Absorption Based Fiber Optic pH Sensor Prepared by Dye Doped Sol-Gel Immobilization Technique,” Optic Communication, Vol. 140, pp. 32-35, 1997.
20.Goldstein, S.R., Peterson, J.I., Fitzgerald, R.V., “A Miniature Fiber Optic pH Sensor for Physiological Use,” J. Biomech. Eng., Vol. 102, pp. 141-146, 1980.
21.Sutherland, R.M., Dahne, C., Place, J.E., Ringrose, A.S., “Immunoassays at a Quartz-Liquid Interface: Theory, Instrumentation and Preliminary Application to the Fluorescent Immunoassay of Human Immunoglobulin G,” J. Immunological Methods, Vol. 74, pp. 253-265, 1984.
22.Sutherland, R.M., Dahne, C., Place, J.E., Ringrose, A.S., “Optical Detection of Antibody-Antigen Rections at a Glass-Liquid Interface,” Clin. Chem., Vol. 30, No. 9, pp. 1533-1538, 1984.
23.MacCraith, B.D., “Enhance Evanescent Wave Sensors Based on Sol-Gel-Derived Porous Glass Coating,” Sensors and Actuators B, Vol. 11, pp. 29-34, 1993.
24.Anderson, G.P., Golden, J.P., Cao, L.K., Wijesuriya D., Shriiver-Lake, L.C., Ligler, F.S., “Development of an Evanescent Wave Fiber Optic Biosensor,” IEEE Engineering in Medicine and Biology, Vol. 12, pp. 358-363, 1994.
25.Weissler, A., White, C.E., “Handbook of Analytical Chemistry,” Meites L. Ed., New York:McGraw-Hill, pp. 6-178 to 6-181, 1963.
26.Weissler, A., White, C.E., “Handbook of Analytical Chemistry,” Meites L. Ed., New York:McGraw-Hill, pp. 6-182 to 6-196, 1963.
27.Skyler, J.S., Control and Diabetic Complications, pp. 1-201, 1978.
28.Mauer, S.M., Steffes, M.W., Sutherland, D.E., Studies of the Rate of Progression of Glomerular Lesions in diabetic Rate Treated with Pancreatic Islet Transplantation, pp. 24-280, 1975.
29.Pirart, J., Diabetes Mellitus and Its Degenerative Complications Study of 4400 Patients Observed Between 1947 and 1973, pp. 1-168, 1978.
30.McCulloch, S., Uttamchundan, D., “Development of A Fiber Optic Micro-Optrode for Intracellular pH Measurements,” IEEE Proc-Optoelectron, Vol. 144, No. 3, pp. 162-167, 1997.
31.Culshaw, B., Dakin, J., Optical Fiber Sensor – Principles and Components, Vol. 1, Artech House, 1988.
32.Culshaw, B., Dakin, J., Optical Fiber Sensor – Systems and Applications, Vol. 2, Artech House, 1989.
33.Culshaw, B., Dakin, J., Optical Fiber Sensor – Components and Subsystems, Vol. 3, Artech House, 1996.
34.Culshaw, B., Dakin, J., Optical Fiber Sensor – Applications, Analysis and Future Trends, Vol. 4, Artech House , 1997.
35.Otto, S.W., Fiber Optic Chemical Sensors and Biosensors, Vol. 1, CRC Press, 1991.
36.Otto, S.W., Fiber Optic Chemical Sensors and Biosensors, Vol. 2, CRC Press, 1991.
37.Mattson, J.S., Mark H.B., MacDonald, H.C., Spectroscopy and Kinetics, Marecl Dekker , 1973.
38.Carr, P.W., Bowers, L.D., Immobilized Enzymes in Analytical and Clinical Chemistry – Fundamentals and Applications, John Wiley & Sons, 1980.
39.Lakowicz, J.R., Topics in Fluorescence Spectroscopy, Vol. 1-Techniques, Plenum Press, 1991.
40.Lakowicz, J.R., Topics in Fluorescence Spectroscopy, Vol. 2-Principles, Plenum Press, 1991.
41.Bendito, D., Silva, M., Kinetic Methods in Analytical Chemistry, Elle Horwood Limited, 1988.
42.Scheller, F., Schubert, F., Biosensors, Elsevier, 1992.
43.何敏夫, 臨床生化學, 合計圖書出版社, 1992.
44.張連璧, 光纖感測器, 文笙書局, 1911.
45.李匡邦, 光譜化學分析, 國立編譯館, 1997.
46.謝博生, 臨床內科學(二)-檢驗篇, 金名圖書有限公司, 1990.
47.游蘇寧, 人體標準正常值手冊, 國際村文庫書店, 1995.