簡易檢索 / 詳目顯示

研究生: 簡心怡
Chien, Hsin-Yi
論文名稱: 利用光學鄰近修正和表面電漿於電漿子微影
Using optical proximity correction and surface plasmon on plasmonic lithography
指導教授: 張晉愷
Chang, Chin-Kai
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 136
中文關鍵詞: 光學鄰近修正近場微影表面電漿有限時域差分法線邊緣粗糙度
外文關鍵詞: Optical proximity correction (OPC), Line edge roughness (LER), Near-field lithography (NFL), Surface plasmon (SP)
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在先進的微影技術中,提高圖形保真度是一項關鍵技術。在本研究中,在近場光學條件下設計與製造了金屬奈米結構光罩,透過在圖形邊緣設計次波長下解析度的輔助特徵可以促進圖形保真度的提高,並應用於近場電漿子微影製程。由於入射光在金屬奈米結構上會產生表面電漿,根據近場光學的理論,其原理即當光與金屬表面相互作用時,表面電漿(Surface Plasmon, SP)會拘束在金屬與介電質表面傳遞,產生表面電漿共振,使得光場在表面附近得到增強。這種增強效應可以用來改變光的傳播特性,進而影響圖案的形狀。
    因此,本研究利用兩種方式來研究利用表面電漿來增強電漿子微影裡圖案的解析度。第一種方式是利用一維和二維的表面溝槽做為一種干涉光,來增加狹縫圖形和圓環圖形的光學對比度,進而改善其曝光圖形的品質,如線邊緣粗糙度(line edge roughness)和表面深度。第二種方式則是透過迭代運算整合有限時域差分法來設計光罩幾何形狀,提出了一種非傳統的光學鄰近修正(Optical Proximity Correction, OPC)方法,即探討表面電漿及光學鄰近修正概念整合下,以提高金屬奈米結構在近場區域中的圖形保真度(patterning fidelity)。而在實驗方面,將光阻旋塗在所設計的金屬奈米結構上,利用自架的曝光系統,進行光阻圖案與模擬之光學影像進行驗證。
    本論文中使用了原子力顯微鏡測量了光阻上的圖形形狀,結果顯示,透過設計的結構曝光出的圖形改善了圖形品質,例如線邊緣粗糙度、角落保真度和圖案光阻深度,進一步證明了所提出的方法的可行性,且這種方法可以應用於更複雜的任意圖案中,並為奈米器件提供良好的圖形保真度。

    Improvement of patterning fidelity is a crucial technology in the advanced lithography. The edge placement and sub-resolution assist features on the mask can facilitate the improvement of patterning fidelity for the better process window. In this study, the metallic nanostructures were designed and fabricated as the photomask for the near-field lithography. The iteration algorithms were adopted to design the mask geometry for the enhancement of pattering fidelity. The unconventional optical proximity correction were proposed, which consider the surface plasmon behaviors. The metallic nanostructures of placement was also investigated the increment of optical contrast in near-field region. The optical image with better patterning fidelity were also obtained by finite-difference time-domain method. The enhancement of patterning fidelity were also demonstrated on the experiment, and the corresponding optical image was printed on the photoresist. Atomic force microscopy was used to measure the pattern shape on the photoresist. The results showed that the exposed pattern by the designed structure improved patterning quality such as line edge roughness, corner fidelity, and depth of patterned photoresist. This method can be implemented for more complex arbitrary patterns in many types of research and provide good pattern fidelity for nanodevices.

    摘要 I Abstract II 誌謝 XIV 目錄 XV 圖目錄 XVII 表目錄 XXV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 4 第二章 文獻回顧 7 2.1 微影技術發展 7 2.2 光學鄰近修正 12 2.3 近場光學(Near-field Optics) 14 2.4 表面電漿發展及歷史回顧 19 2.5 表面電漿極化子的物理 20 2.6 表面電漿極化子的激發 31 2.7 棱鏡耦合條件 33 2.8 光柵耦合 34 2.9 局部區域性表面電漿共振 (Localized Surface Plasmon Resonance, LSPR) 36 2.10 表面電漿極化子的傳播 37 2.11 近場微影(Near-field Lithography, NFL)發展與應用 38 第三章 實驗製備流程與設計 67 3.1 實驗架構流程介紹 67 3.2 實驗機台原理與模擬軟體介紹 68 3.2.1 電子束蒸鍍機(Electron Beam Evaporator) 68 3.2.2 表面粗度儀 70 3.2.3 雙束型聚焦離子束 71 3.2.4 旋轉塗佈儀 74 3.2.5 原子力探針顯微鏡 (Atomic Force Microscope, AFM) 75 3.2.6 模擬軟體FDTD介紹 78 3.3 奈米結構設計 79 3.4 基板製備 86 3.4.1 玻璃基板前置準備作業 86 3.4.2 銀薄膜沉積 88 3.4.3 銀薄膜厚度量測 93 3.5 雙束型聚焦離子束定義奈米結構 96 3.6 黃光微影製程 103 3.6.1 塗佈 SiO2及光阻 103 3.6.2 曝光實驗及顯影 108 3.6.2.1 雷射光路設計架構 108 3.6.2.2 曝光顯影實驗步驟及參數設定 112 3.7 原子力顯微鏡量測 115 第四章 結果與討論 119 第五章 結論與未來展望 129 第六章 參考文獻 132

    1. Liu, Z., et al., Focusing surface plasmons with a plasmonic lens. Nano letters, 2005. 5(9): p. 1726-1729.
    2. Srituravanich, W., et al., Plasmonic nanolithography. Nano letters, 2004. 4(6): p. 1085-1088.
    3. Zeng, B., et al., Improved near field lithography by surface plasmon resonance in groove-patterned masks. Journal of Optics A: Pure and Applied Optics, 2009. 11(12): p. 125003.
    4. Luo, J., et al., Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography. Nanoscale, 2015. 7(44): p. 18805-18812.
    5. Pan, L., et al., Maskless plasmonic lithography at 22 nm resolution. Scientific reports, 2011. 1(1): p. 175.
    6. Wang, C., et al., Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Optics Express, 2013. 21(18): p. 20683-20691.
    7. Oh, S., et al., Optical proximity correction (OPC) in near-field lithography with pixel-based field sectioning time modulation. Nanotechnology, 2017. 29(4): p. 045301.
    8. McNab, S.J. and R.J. Blaikie, Contrast in the evanescent near field of λ/20 period gratings for photolithography. Applied Optics, 2000. 39(1): p. 20-25.
    9. Ebbesen, T.W., et al., Extraordinary optical transmission through sub-wavelength hole arrays. nature, 1998. 391(6668): p. 667-669.
    10. Schick, I., et al. Experimental study of enhanced transmission through subwavelength linear apertures flanked by periodic corrugations. in Plasmonics: Metallic Nanostructures and their Optical Properties IV. 2006. SPIE.
    11. Brock, D.C. and G.E. Moore, Understanding Moore's law: four decades of innovation. 2006: Chemical Heritage Foundation.
    12. Jaeger, R.C., Introduction to microelectronic fabrication. 1987: Addison-Wesley Longman Publishing Co., Inc.
    13. Madou, M.J., Fundamentals of microfabrication: the science of miniaturization. 2002: CRC press.
    14. Sharma, E., et al., Evolution in Lithography Techniques: Microlithography to Nanolithography. Nanomaterials, 2022. 12(16): p. 2754.
    15. Gwyn, C.W., et al., Extreme ultraviolet lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1998. 16(6): p. 3142-3149.
    16. Puthankovilakam, K., Limitations of Proximity Lithography Printing. 2017, EPFL.
    17. Bailey, G.E., et al. Double pattern EDA solutions for 32nm HP and beyond. in Design for Manufacturability through Design-Process Integration. 2007. SPIE.
    18. Tennant, D.M., Progress and issues in e-beam and other top down nanolithography. Journal of Vacuum Science & Technology A, 2013. 31(5).
    19. Van Dorp, W., Sub-10 nm writing: focused electron beam-induced deposition in perspective. Applied Physics A, 2014. 117(4): p. 1615-1622.
    20. Chen, Y., Nanofabrication by electron beam lithography and its applications: A review. Microelectronic Engineering, 2015. 135: p. 57-72.
    21. Gierak, J., et al., Review of electrohydrodynamical ion sources and their applications to focused ion beam technology. Journal of Vacuum Science & Technology B, 2018. 36(6).
    22. Bruchhaus, L., et al., Comparison of technologies for nano device prototyping with a special focus on ion beams: A review. Applied Physics Reviews, 2017. 4(1): p. 011302.
    23. Chou, S.Y., P.R. Krauss, and P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science, 1996. 272(5258): p. 85-87.
    24. Murasato, N. and T. Arai. Progress in nanoimprint wafer and mask systems for high volume semiconductor manufacturing. in Photomask Japan 2018: XXV Symposium on Photomask and Next-Generation Lithography Mask Technology. 2018. SPIE.
    25. Hatano, M., et al. NIL defect performance toward high volume mass production. in Alternative Lithographic Technologies VIII. 2016. SPIE.
    26. Pimpin, A. and W. Srituravanich, Review on micro-and nanolithography techniques and their applications. Engineering Journal, 2012. 16(1): p. 37-56.
    27. Capodieci, L. From Optical Proximity Correction to Lithography-Driven Physical Design (1996-2006): 10 years of Resolution Enhancement Technology and the roadmap enablers for the next decade. in Optical Microlithography XIX. 2006. SPIE.
    28. Matsunawa, T., B. Yu, and D.Z. Pan. Optical proximity correction with hierarchical bayes model. in Optical Microlithography XXVIII. 2015. SPIE.
    29. Otto, O.W., et al. Automated optical proximity correction: a rules-based approach. in Optical/Laser Microlithography VII. 1994. SPIE.
    30. Oh, Y.-H., J.-C. Lee, and S. Lim, Resolution enhancement through a rule-free optical proximity correction in optical lithography. JOURNAL-KOREAN PHYSICAL SOCIETY, 1998. 33: p. S63-S66.
    31. Shi, R., et al. The selection and creation of the rules in rules-based optical proximity correction. in ASICON 2001. 2001 4th International Conference on ASIC Proceedings (Cat. No. 01TH8549). 2001. IEEE.
    32. Shioiri, S. and H. Tanabe. Fast optical proximity correction: analytical method. in Optical/Laser Microlithography VIII. 1995. SPIE.
    33. Kahng, A.B., S. Muddu, and C.-H. Park, Auxiliary pattern-based optical proximity correction for better printability, timing, and leakage control. Journal of Micro/Nanolithography, MEMS and MOEMS, 2008. 7(1): p. 013002-013002-13.
    34. Yu, P. and D.Z. Pan. A novel intensity based optical proximity correction algorithm with speedup in lithography simulation. in 2007 IEEE/ACM International Conference on Computer-Aided Design. 2007. IEEE.
    35. Huang, L.-D. and M.D. Wong. Optical proximity correction (OPC) friendly maze routing. in Proceedings of the 41st Annual Design Automation Conference. 2004.
    36. Ma, X., et al., Block-based mask optimization for optical lithography. Applied optics, 2013. 52(14): p. 3351-3363.
    37. 維基百科. 夫朗和斐繞射.
    38. Heinzelmann, H. and D. Pohl, Scanning near-field optical microscopy. Applied Physics A, 1994. 59: p. 89-101.
    39. Kryukov, A., Y.-K. Kim, and J.B. Ketterson, Surface plasmon scanning near-field optical microscopy. Journal of applied physics, 1997. 82(11): p. 5411-5415.
    40. Wood, R.W., XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1902. 4(21): p. 396-402.
    41. Fano, U., The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA, 1941. 31(3): p. 213-222.
    42. Hessel, A. and A. Oliner, A new theory of Wood’s anomalies on optical gratings. Applied optics, 1965. 4(10): p. 1275-1297.
    43. Maxwell-Garnett, J.C., XII. Colours in metal glasses and in metallic films. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1904. 203(359-371): p. 385-420.
    44. Mie, G., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der physik, 1908. 330(3): p. 377-445.
    45. Pines, D., Collective energy losses in solids. Reviews of modern physics, 1956. 28(3): p. 184.
    46. Fano, U., Atomic theory of electromagnetic interactions in dense materials. Physical Review, 1956. 103(5): p. 1202.
    47. Ritchie, R.H., Plasma losses by fast electrons in thin films. Physical review, 1957. 106(5): p. 874.
    48. Ritchie, R.H., et al., Surface-plasmon resonance effect in grating diffraction. Physical review letters, 1968. 21(22): p. 1530.
    49. Hong, F. and R. Blaikie, Plasmonic lithography: recent progress. Advanced Optical Materials, 2019. 7(14): p. 1801653.
    50. Barnes, W.L., A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. nature, 2003. 424(6950): p. 824-830.
    51. Specht, M., et al., Scanning plasmon near-field microscope. Physical review letters, 1992. 68(4): p. 476.
    52. Zhang, J., L. Zhang, and W. Xu, Surface plasmon polaritons: physics and applications. Journal of Physics D: Applied Physics, 2012. 45(11): p. 113001.
    53. Edward, D.P. and I. Palik, Handbook of optical constants of solids. 1985, Academic press New York.
    54. 邱國斌、蔡定平, 金屬表面電漿簡介. 物理雙月刊, 2006: p. 472-485.
    55. 駱書成, 曲率光柵開發應用於影像式光譜儀和高通量感測. 2016.
    56. Zayats, A.V., I.I. Smolyaninov, and A.A. Maradudin, Nano-optics of surface plasmon polaritons. Physics reports, 2005. 408(3-4): p. 131-314.
    57. Sharma, A.K., R. Jha, and B. Gupta, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors journal, 2007. 7(8): p. 1118-1129.
    58. Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei, 1968. 216(4): p. 398-410.
    59. Ho, C.-Y., Directional Surface Plasmon Excitation via Collinearly Tight Focus.
    60. Roh, S., T. Chung, and B. Lee, Overview of the characteristics of micro-and nano-structured surface plasmon resonance sensors. Sensors, 2011. 11(2): p. 1565-1588.
    61. 洪健雄, et al., 電漿子學原理與應用. 真空科技, 2012. 25(1): p. 9-23.
    62. Betzig, E. and J.K. Trautman, Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science, 1992. 257(5067): p. 189-195.
    63. Royer, P., et al., Near-field optical patterning and structuring based on local-field enhancement at the extremity of a metal tip. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2004. 362(1817): p. 821-842.
    64. Landis, S., Nano Lithography. 2013: John Wiley & Sons.
    65. Kaestner, M., et al. Electric field scanning probe lithography on molecular glass resists using self-actuating, self-sensing cantilever. in Alternative Lithographic Technologies VI. 2014. SPIE.
    66. Xia, Y., et al., Unconventional methods for fabricating and patterning nanostructures. Chemical reviews, 1999. 99(7): p. 1823-1848.
    67. Synge, E., XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1928. 6(35): p. 356-362.
    68. Xie, Z., et al., Polymer nanostructures made by scanning probe lithography: recent progress in material applications. Macromolecular rapid communications, 2012. 33(5): p. 359-373.
    69. Yin, X., et al., Near-field two-photon nanolithography using an apertureless optical probe. Applied Physics Letters, 2002. 81(19): p. 3663-3665.
    70. Triolo, C., et al., Pure optical nano-writing on light-switchable spiropyrans/merocyanine thin film. Optics Express, 2014. 22(1): p. 283-288.
    71. Kotlyar, V., et al., Tight focusing of laser light using a chromium Fresnel zone plate. Optics Express, 2017. 25(17): p. 19662-19671.
    72. Abu-Thabit, N.Y. and A.S.H. Makhlouf, Fundamental of smart coatings and thin films: Synthesis, deposition methods, and industrial applications, in Advances in smart coatings and thin films for future industrial and biomedical engineering applications. 2020, Elsevier. p. 3-35.
    73. Kuba, J., et al., Advanced cryo‐tomography workflow developments–correlative microscopy, milling automation and cryo‐lift‐out. Journal of microscopy, 2021. 281(2): p. 112-124.
    74. Jamaludin, F.S., M.F. Mohd Sabri, and S.M. Said, Controlling parameters of focused ion beam (FIB) on high aspect ratio micro holes milling. Microsystem technologies, 2013. 19: p. 1873-1888.
    75. 王彥茹, 儀器設備技術手冊與訓練教材 雙束型聚焦離子束 I (Dual Beam-Focused Ion Beam I ). 2022.
    76. George, G., S.R. Ede, and Z. Luo, Fundamentals of perovskite oxides: synthesis, structure, properties and applications. 2020: CRC Press.
    77. Barhoum, A. and M.L. García-Betancourt, Physicochemical characterization of nanomaterials: Size, morphology, optical, magnetic, and electrical properties, in Emerging applications of nanoparticles and architecture nanostructures. 2018, Elsevier. p. 279-304.
    78. Peng, J., et al., Water-solid interfaces probed by high-resolution atomic force microscopy. Surface Science Reports, 2022. 77(1): p. 100549.
    79. Lai, C.C., J.M. Bell, and N. Motta, Bovine serum albumin adhesion force measurements using an atomic force microscopy. Vol. 32. 2008: Trans Tech Publ.
    80. 許瑞文, Enhancement of focusing properties of Bessel-like beam by metallic surface nanostructure. 2022.
    81. THORLABS. Spatial Filters Tutorial.

    下載圖示 校內:2025-08-31公開
    校外:2025-08-31公開
    QR CODE