| 研究生: |
劉逸文 Liu, Yi-Wen |
|---|---|
| 論文名稱: |
油系鈦酸鋇漿料之分散及流變性質對薄帶特性及陶瓷體介電強度之影響 |
| 指導教授: |
雷大同
Ray, Don-Tung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 鈦酸鋇 、分散 、流變性質 |
| 外文關鍵詞: | BaTiO3, dispersion, rheological |
| 相關次數: | 點閱:120 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在電子資訊高度發展的時代,為增加電子元件的密度,以符合電子產品輕、薄、短、小,及高功能等需求,電子用多層陶瓷基板及元件逐漸受到重視,以達到增加基板上晶片的單位密度、縮短連接晶片導體的長度,提高線路的性能及其可靠度等目標。薄帶成型(tape casting)法所得的陶瓷生胚薄帶,為製造多層陶瓷元件與基板的主要材料,而要製備性質良好的生胚薄帶,在製程中之漿料調配,即為不可忽視的重要關鍵之一。
漿料性質是影響陶瓷薄帶製作及燒結良率,進而影響產品的品質與薄層化能力之主要因素,在陶瓷製程中,一般漿料須具有牛頓流體的流變行為。因此了解並控制漿料的流變性質,是一項極重要的工作。而本研究以三種不同成份之分散劑配製鈦酸鋇漿料,探討不同添加量對其流變性質之影響,以尋求調配陶瓷粉體漿料之最適條件,並尋求漿料性質與生胚薄帶中粉體堆積之關係及燒結體介電強度之性質。
研究結果顯示,漿料在凝聚狀態下,呈現賓罕或假塑性流體的行為,黏度極高;在分散狀態下,呈現牛頓流體行為,黏度降低。而在三種分散劑中,BYK-111 (copolymer+phosphoric acid)之分散效果最佳。實驗結果顯示,漿料分散之良窳對粉體之堆積、表面粗糙度及陶瓷生胚薄帶之顯微結構有顯著之影響。分散良好之漿料,有較佳之粉體堆積且所製備的陶瓷生胚密度較高,表面較為平整且可得較緻密之陶瓷體;在電性質方面可得較高之絕緣電阻及較高之介電強度。
In present highly developed information era, to increase electronic device density so as to fulfill the requirements of miniaturization and versatile functions, multilayer ceramic substrates and devices are more and more to be relied on. This is the key factor in the densification of chips on substrate, shortening chip connection and improving circuit quality and reliability. Tape casting is the main process to manufacture ceramic green film used for multilayer ceramic devices and substrates. It is necessary to prepare well-dispersed slurry so as to obtain well-qualified green films.
The slurry property is the major factor affecting the preparation of green films and subsequent sintering results, as well as the quality and laminate ability of the products. In ceramic processing, the ideal slurry must show Newtonian fluid behavior, therefore to understand and control the rheological properties of slurry is an important work. This study used three dispersants to prepared BaTiO3 slurries. The influences of different dosage on the rheological properties of the slurry were investigated. The relationship between slurry property, powder packing in green film and dielectric strength of sintered body was correlated.
The results show that the slurry at coagulated state appears to be Bingham or pseudoplastic fluid, with very high viscosity, while at dispersed state appears to be Newtonian fluid, with decreasing viscosity. BYK-111 (copolymer+phosphoric acid) is the best dispersant in this study. The experiment results also show that the dispersed state of the slurry has a significant effect on powder packing, surface roughness and microstructure. Well-dispersed slurry yielded high green density, high sintered density and much smooth the surface roughness. Electric properties such as the insulation resistance and dielectric strength, of dielectric prepared from well-dispersed slurries compared to non-dispersed are also superior.
1.Hyatt, E.P.” Making Thin, Flat Ceramics-A Review,” Am. Ceram. Soc. Bull. Vol.65, No.4, pp.637-638, 1986.
2.汪建民主編,”陶瓷技術手冊”,中華民國粉末冶金協會及中華民國產業科技發展協進會出版,1999。
3.Maiti, A.K. and B. Rajender, “Terpineol as a dispersant for tape casting yttria stabilized zirconia powder,” Materials Science and Engineering A, pp.35-40, 2002.
4.Wang, H.R. and J.H. Jean, ”Dispersion Behaviors of Aqueous BaTiO3 Suspensions,” Chinese Journal of Materials Science, Vol.29, No.3, pp.195-202 1997.
5.Reed, J. S., “Principles of Ceramics Processing,” Second Edition, Wiley-Interscience, pp.277-305, 1995.
6.Zhang, G.N., Y.G. Wang and J.S. Ma, “Bingham plastic fluid flow model for ceramic tape casting,” Materials Science and Engineering A, pp.274-280, 2002.
7.Tok, A.I.Y., F.Y.C. Boey and Y.C. Lam, “Non-Newtonian fluid flow model for ceramic tape casting,” Materials Science and Engineering A, pp.282-288, 2000.
8.Paik, U.Y., V. A. Hackley, S.C. Choi and Y.G. Jung, ”The effect of electrostatic repulsive forces on the stability of BaTiO3 particles suspended in non-aqueous media,” Colloids and Surfaces, pp.77-88, 1998.
9.Overbeek, J. Th. G., ”Interparticle Forces in Colloid Science,” Powder Tech., Vol.37, pp.195-208, 1984.
10.Shaw, D.J., “Introduction to Colloid and Surface Chemistry,” Butterworth Heinemann, 4th ed., 1992.
11.Napper, D.H., “Steric Stabilization,” J. Colloid Interface Sci., Vol.58, pp.390-407, 1977.
12.Napper, D.H., “Polymeric Stabilization of Colloidal Dispersions,” Academic Press, pp.18-30, 1983.
13.Feigin, R.I. and D.H. Napper, “Depletion Stabilization and Depletion Flocculation,” J. colloid Interface Sci., Vol.75, pp.525-541, 1980.
14.Howard, G. L., F. L. Hudson and J. West, ”Water-soluble Polymers as Retention Aids in a Model Papermaking system I. Polyacrylamides,” J. Applied Polymer Sci., Vol.21, pp.1-16, 1977.
15.Chang, H. L., “Polymer Flooding Technology-Yesterday, Today and Tomorrow,” J. Petroleum Tech., Vol.30, pp.1113-1128, 1978.
16.Vincent, B., “The Effect of Adsorbed Polymers on Dispersion Stability,” Adv. Colloid Interface Sci., Vol. 4, pp.193-277, 1974.
17.Myers, D., ”Surfaces, Interfaces, and Colloids”, Second Edition, Wiley-VCH, pp.244-248, 1999.
18.Hunter, R. J., ”Introduction to Modern Colloid Science,” Oxford Science, 1993.
19.Nguyen, Q. D. and D. V. Boger, “Yield Stress Measurement for Concentrated Suspensions,” Journal of Rheology, Vol.27 (4), pp.321-349, 1983.
20.趙承琛,”界面科學基礎”,復文書局出版,1991。
21.Rosen, M. J., ”Surfactants and Interfacial Phenomena,” Second Edition, Wiley-Interscience, pp.1-169, 1989.
22.Somasundaran, P., E. D. Snell and Q. Xu, ”Adsorption Behavior of Alkylarylethoxylated Alcohols on silica,” J. Colloid & Interface Sci., Vol.144, No.1, pp165-173, 1991.