簡易檢索 / 詳目顯示

研究生: 劉逸文
Liu, Yi-Wen
論文名稱: 油系鈦酸鋇漿料之分散及流變性質對薄帶特性及陶瓷體介電強度之影響
指導教授: 雷大同
Ray, Don-Tung
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 78
中文關鍵詞: 鈦酸鋇分散流變性質
外文關鍵詞: BaTiO3, dispersion, rheological
相關次數: 點閱:120下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在電子資訊高度發展的時代,為增加電子元件的密度,以符合電子產品輕、薄、短、小,及高功能等需求,電子用多層陶瓷基板及元件逐漸受到重視,以達到增加基板上晶片的單位密度、縮短連接晶片導體的長度,提高線路的性能及其可靠度等目標。薄帶成型(tape casting)法所得的陶瓷生胚薄帶,為製造多層陶瓷元件與基板的主要材料,而要製備性質良好的生胚薄帶,在製程中之漿料調配,即為不可忽視的重要關鍵之一。
    漿料性質是影響陶瓷薄帶製作及燒結良率,進而影響產品的品質與薄層化能力之主要因素,在陶瓷製程中,一般漿料須具有牛頓流體的流變行為。因此了解並控制漿料的流變性質,是一項極重要的工作。而本研究以三種不同成份之分散劑配製鈦酸鋇漿料,探討不同添加量對其流變性質之影響,以尋求調配陶瓷粉體漿料之最適條件,並尋求漿料性質與生胚薄帶中粉體堆積之關係及燒結體介電強度之性質。
    研究結果顯示,漿料在凝聚狀態下,呈現賓罕或假塑性流體的行為,黏度極高;在分散狀態下,呈現牛頓流體行為,黏度降低。而在三種分散劑中,BYK-111 (copolymer+phosphoric acid)之分散效果最佳。實驗結果顯示,漿料分散之良窳對粉體之堆積、表面粗糙度及陶瓷生胚薄帶之顯微結構有顯著之影響。分散良好之漿料,有較佳之粉體堆積且所製備的陶瓷生胚密度較高,表面較為平整且可得較緻密之陶瓷體;在電性質方面可得較高之絕緣電阻及較高之介電強度。

    In present highly developed information era, to increase electronic device density so as to fulfill the requirements of miniaturization and versatile functions, multilayer ceramic substrates and devices are more and more to be relied on. This is the key factor in the densification of chips on substrate, shortening chip connection and improving circuit quality and reliability. Tape casting is the main process to manufacture ceramic green film used for multilayer ceramic devices and substrates. It is necessary to prepare well-dispersed slurry so as to obtain well-qualified green films.
    The slurry property is the major factor affecting the preparation of green films and subsequent sintering results, as well as the quality and laminate ability of the products. In ceramic processing, the ideal slurry must show Newtonian fluid behavior, therefore to understand and control the rheological properties of slurry is an important work. This study used three dispersants to prepared BaTiO3 slurries. The influences of different dosage on the rheological properties of the slurry were investigated. The relationship between slurry property, powder packing in green film and dielectric strength of sintered body was correlated.
    The results show that the slurry at coagulated state appears to be Bingham or pseudoplastic fluid, with very high viscosity, while at dispersed state appears to be Newtonian fluid, with decreasing viscosity. BYK-111 (copolymer+phosphoric acid) is the best dispersant in this study. The experiment results also show that the dispersed state of the slurry has a significant effect on powder packing, surface roughness and microstructure. Well-dispersed slurry yielded high green density, high sintered density and much smooth the surface roughness. Electric properties such as the insulation resistance and dielectric strength, of dielectric prepared from well-dispersed slurries compared to non-dispersed are also superior.

    目 錄 摘要 Ⅱ ABSTRACT III 表目錄 VI 圖目錄 VII 誌謝 Ⅹ 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 4 第二章 基礎背景 5 2.1 膠體懸浮液之凝聚與分散 5 2.2 膠體懸浮液之流變性質 13 2.3 表面活性劑之吸附 15 第三章 實驗 21 3.1實驗材料 21 3.2 實驗步驟 21 3.2.1 流變性質測定 21 3.2.2 生胚製備 23 3.2.3 積層熱壓 24 3.2.4 電性量測 24 3.3 性質分析 25 3.3.1 粉末成份分析 25 3.3.2 流變性質量測 25 3.3.3 生胚密度量 25 3.3.4 燒結體密度量測 25 3.3.5 掃瞄式電子顯微鏡分析 25 3.3.6 表面粗度量測 26 3.3.7 電性量測 26 第四章 結果與討論 28 4.1 粉末成份分析 28 4.2 漿料之流變性質 28 4.2.1 三種分散劑及添加量之影響 28 4.2.2 分散劑之吸附 45 4.2.3不同溶劑配比對漿料之影響 46 4.3 漿料分散對薄帶性質之影響 51 4.4 漿料分散對陶瓷體介電強度之影響 53 第五章 結論 55 參考文獻 57 附錄A DV-Ⅲ型錐盤流變儀操作步驟 59 附錄B 奧士瓦黏度計(Ostwald viscometer)操作步驟 63 附錄C 表面粗度儀(alpha-step 500)操作步驟 67 附錄D 實驗數據 73 表目錄 表1.1 陶瓷生胚製作方法之比較 3 表4.1 分散劑之吸附量 45 表4.2 陶瓷薄帶生胚及燒結體(1050℃)密度 52 表4.3 不同分散條件下製備之陶瓷電容在常溫下之基本電性 54 表4.4 陶瓷薄帶燒結體在常溫下之破壞電壓 54 表B1 純水絕對黏度及密度 66 圖目錄 圖2.1 電雙層結構示意圖 7 圖2.2 高分子聚合物在微粒表面之吸附(a)高分子聚合物吸附於微粒表面之構形圖(b)聚合物吸附於數個微粒表面,藉架橋作用產生凝聚 10 圖2.3 膠體系統之淨位能變化 12 圖2.4 各種不同流體之切應力與切變率之關係 14 圖2.5 多層吸附之吸附恒溫曲線 17 圖2.6 單層吸附之吸附恒溫曲線 17 圖2.7 離子交換作用 19 圖2.8 靜電吸引力作用 19 圖2.9 疏水鍵結作用 19 圖2.10 表面活性劑與固體表面之間形成氫鍵 20 圖2.11 路易斯酸鹼作用 20 圖2.12 經由分散力吸附至固體表面 20 圖3.1 鈦酸鋇基介電陶瓷粉末(K-80)之粒徑分佈圖 22 圖3.2 燒結處理之溫度升降曲線 26 圖3.3 實驗流程圖 27 圖4.1 介電陶瓷粉末K-80之EDS分析結果 29 圖4.2 BYK-111添加量與漿料(70 wt%)之流變性質 30 圖4.3 BYK-111添加量與漿料(70 wt%)之黏度變化 31 圖4.4 在不同切變率下BYK-111添加量與漿料(70 wt%)黏度之關係 32 圖4.5 BYK-140添加量與漿料(70 wt%)之流變性質 35 圖4.6 BYK-140添加量與漿料(70 wt%)之黏度變化 36 圖4.7 在不同切變率下BYK-140添加量與漿料(70 wt%)黏度之關係 37 圖4.8 BYK-161添加量與漿料(70 wt%)之流變性質 38 圖4.9 BYK-161添加量與漿料(70 wt%)之黏度變化 39 圖4.10 不同切變率下BYK-161添加量與漿料(70 wt%)黏度之關係 40 圖4.11 不同切變率下BYK-111添加量與漿料(70 wt%)黏度之關係 41 圖4.12 不同切變率下BYK-140添加量與漿料(70 wt%)黏度之關係 42 圖4.13 不同切變率下BYK-161添加量與漿料(70 wt%)黏度之關係 43 圖4.14 三種分散劑之添加量與漿料(70 wt%)黏度之關係 44 圖4.15 不同切變率下,溶劑中甲苯量與漿料(70 wt%)黏度之關係(分散劑為BYK-111;添加量為0.5 wt%) 47 圖4.16 不同切變率下,溶劑中甲苯量與漿料(70 wt%)黏度之關係(分散劑為BYK-140;添加量為0.5 wt%) 48 圖4.17 不同切變率下,溶劑中甲苯量與漿料(70wt%)黏度之關係(分散劑為BYK-161;添加量為0.5wt%) 49 圖4.18 不同溶劑配比製備之漿料以液滴方式所得陶瓷生胚之SEM(分散劑為BYK-111;添加量為0.5 wt%;溶劑分別為(a)100%酒精;(b)50%甲苯及50%酒精;(c)100%甲苯) 50 圖4.19 陶瓷生胚薄帶正反面之SEM((a)BYK-111,0.5 wt%,左正面右反面及(b)BYK-111,1.3 wt%,左正面右反面) 52 圖4.20 陶瓷生胚薄帶表面粗糙度 53 圖A1 DV-Ⅲ型錐盤流變儀之錐盤側視圖 62 圖A2 DV-Ⅲ型錐盤流變儀之樣品放置處 62 圖B1 奧士瓦黏度計 65

    1.Hyatt, E.P.” Making Thin, Flat Ceramics-A Review,” Am. Ceram. Soc. Bull. Vol.65, No.4, pp.637-638, 1986.

    2.汪建民主編,”陶瓷技術手冊”,中華民國粉末冶金協會及中華民國產業科技發展協進會出版,1999。

    3.Maiti, A.K. and B. Rajender, “Terpineol as a dispersant for tape casting yttria stabilized zirconia powder,” Materials Science and Engineering A, pp.35-40, 2002.

    4.Wang, H.R. and J.H. Jean, ”Dispersion Behaviors of Aqueous BaTiO3 Suspensions,” Chinese Journal of Materials Science, Vol.29, No.3, pp.195-202 1997.

    5.Reed, J. S., “Principles of Ceramics Processing,” Second Edition, Wiley-Interscience, pp.277-305, 1995.

    6.Zhang, G.N., Y.G. Wang and J.S. Ma, “Bingham plastic fluid flow model for ceramic tape casting,” Materials Science and Engineering A, pp.274-280, 2002.

    7.Tok, A.I.Y., F.Y.C. Boey and Y.C. Lam, “Non-Newtonian fluid flow model for ceramic tape casting,” Materials Science and Engineering A, pp.282-288, 2000.

    8.Paik, U.Y., V. A. Hackley, S.C. Choi and Y.G. Jung, ”The effect of electrostatic repulsive forces on the stability of BaTiO3 particles suspended in non-aqueous media,” Colloids and Surfaces, pp.77-88, 1998.

    9.Overbeek, J. Th. G., ”Interparticle Forces in Colloid Science,” Powder Tech., Vol.37, pp.195-208, 1984.

    10.Shaw, D.J., “Introduction to Colloid and Surface Chemistry,” Butterworth Heinemann, 4th ed., 1992.

    11.Napper, D.H., “Steric Stabilization,” J. Colloid Interface Sci., Vol.58, pp.390-407, 1977.

    12.Napper, D.H., “Polymeric Stabilization of Colloidal Dispersions,” Academic Press, pp.18-30, 1983.

    13.Feigin, R.I. and D.H. Napper, “Depletion Stabilization and Depletion Flocculation,” J. colloid Interface Sci., Vol.75, pp.525-541, 1980.

    14.Howard, G. L., F. L. Hudson and J. West, ”Water-soluble Polymers as Retention Aids in a Model Papermaking system I. Polyacrylamides,” J. Applied Polymer Sci., Vol.21, pp.1-16, 1977.

    15.Chang, H. L., “Polymer Flooding Technology-Yesterday, Today and Tomorrow,” J. Petroleum Tech., Vol.30, pp.1113-1128, 1978.

    16.Vincent, B., “The Effect of Adsorbed Polymers on Dispersion Stability,” Adv. Colloid Interface Sci., Vol. 4, pp.193-277, 1974.

    17.Myers, D., ”Surfaces, Interfaces, and Colloids”, Second Edition, Wiley-VCH, pp.244-248, 1999.

    18.Hunter, R. J., ”Introduction to Modern Colloid Science,” Oxford Science, 1993.

    19.Nguyen, Q. D. and D. V. Boger, “Yield Stress Measurement for Concentrated Suspensions,” Journal of Rheology, Vol.27 (4), pp.321-349, 1983.

    20.趙承琛,”界面科學基礎”,復文書局出版,1991。

    21.Rosen, M. J., ”Surfactants and Interfacial Phenomena,” Second Edition, Wiley-Interscience, pp.1-169, 1989.

    22.Somasundaran, P., E. D. Snell and Q. Xu, ”Adsorption Behavior of Alkylarylethoxylated Alcohols on silica,” J. Colloid & Interface Sci., Vol.144, No.1, pp165-173, 1991.

    下載圖示 校內:2004-08-01公開
    校外:2004-08-01公開
    QR CODE