| 研究生: |
林益生 Lin, Yi-Sheng |
|---|---|
| 論文名稱: |
以烷基駢苯衍生物作為主動層之有機薄膜電晶體 N-Alkyl Perylene Diimides based Organic Thin Film Transistors |
| 指導教授: |
周維揚
Chou, Wei-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 有機薄膜電晶體 、場效載子遷移率 、底部接觸 、烷基駢苯衍生物 |
| 外文關鍵詞: | Perylene derivatives, organic thin-film transistors, bottom contact, field-effect mobility |
| 相關次數: | 點閱:85 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究的主題是由本實驗室自行合成烷基的碳數二至十三之不同烷基駢苯衍生物N,N'-dialkyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-CnH2n+1)作為有機薄膜電晶體主動層材料,並使用核磁共振儀及吸收光譜分析材料結構與特性。
本實驗分為兩部份,第一部份我們將不同烷基駢苯衍生物成膜於底部接觸型(Bottom contact)結構元件中,元件的電極採用梳狀氧化銦鍚(Indium Tin Oxide)電極作為源極與汲極,並於成膜前對基板表面作氧電漿(O2 Plasma)清潔,將不同烷基駢苯衍生物分別成膜於基板溫度為常溫及100 ℃之基板,分析元件比較電性差異。第二部份我們將不同烷基駢本衍生物的薄膜成膜於矽基板上分析,分別使用X-Ray繞射光譜及吸收光譜研究不同烷基碳數薄膜結構的差異。
在第一部份中我們發現不論是主動層成膜於基板溫度為常溫或100 ℃之條件,元件電性均有隨著烷基碳數增加而提升的趨勢。而主動層成膜於基板溫度為100 ℃之元件電性也較主動層成膜於基板溫度為常溫時佳。第二部份由X-Ray繞射光譜分析我們發現薄膜結構隨著烷基碳數增加其分子的主軸會漸漸躺向基板,而分析高碳數烷基的烷基駢苯衍生物薄膜發現,隨著烷基碳數增加其結晶無序度(The degree of crystalline disorder)並不會有所差別,再者,由吸收光譜分析上的結果亦排除烷基碳數改變造成PTCDI能階變化而使電性產生差異。
We demonstrated organic thin-film transistors (OTFTs) using N,N'-dialkyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-CnH2n+1, n = 2~13) with bottom contact comb-like indium tin oxide (ITO) electrodes. The perylene derivatives were synthesized in our laboratory and analyzed the material properties by nuclear magnetic resonance 1-D hydrogen spectroscopy (1H-NMR) and absorption spectrum. In part 1, we compared the electronic properties with different conditions, in which perylene derivatives were deposited on substrate under room temperature and 100 ℃. We observed that the field-effect mobilities of OTFTs increase with increasing the number of carbon within alkyl group of perylene derivatives. The performances of OTFTs, in which the perylene derivatives were deposited under 100 ℃, were better than that of those grown at room temperature. In part 2, we analyzed the properties of these thin films by the X-Ray diffraction (XRD) and absorption spectrum. From the XRD analyses, the molecules of perylene lie toward substrate with increasing the number of carbon within alkyl group without screw. From the absorption spectrum analyses, we can exclude the electronic properties of OTFTs from the factor of energy band gap of PTCDI with various perylene derivatives.
[1]. O. H. Le Blanc, “Hole and Electron Drift Mobilities in Anthracene” J. Chem. Phys. 33, 626 (1960).
[2]. R. G. Kepler, “Charge Carrier Production and Mobility in Anthrancene Crystals” Phys. Rev. 119, 1226 (1960).
[3]. M. Pope, H. P. Kallmann, P. Magnante, “Electroluminescence in Organic Crystals” J. Chem. Phys. 38, 2042 (1963).
[4]. M. C. J. M. Vissenberg, “Opto-Electronic Properties of Disordered Organic Semiconductors”, (1999).
[5]. C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, “Electrical Conductivity in Doped Polyacetylene” Phys. Rev. Lett. 39, 1098 (1977).
[6]. F. Garnier, R. Hajlaoui, A. Yassar, P. Srivastava, “All-Polymer Field-Effect Transistor Realized by Printing Techniques”, Science 265, 1684 (1994).
[7]. D. Gamota, J. Zhang, P. Brazis, K. Kalyanasundaram, “Printed organic and molecular electronics,” Kluwer Academic Publishers (2004).
[8]. G. Guillaud, M. A. Sadoun, M. M. Simon, M. Bouvet, “Field-effect transistors based on intrinsic molecular semiconductor”, Chem. Phys. Lett. 167, 503 (1990).
[9]. C. Waldauf, P. Schilinsky, M. Perisutti, J. Hauch, C. J. Brabec, “Solution-Processd Organic n-Type Thin-Film Transistors”, Adv. Mater. 15, 2084 (2003).
[10]. R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. da S. Filho, J.-L. Brédas, L. L. Miller, K. R. Mann, C. D. Frisbie, “Organic thin film transistors based on N-alkyl perylene diimides: charge transport kinetics as a function gate voltage and temperature”, J. Phys. Chem. B 108, 19281 (2004).
[11]. S. Tatemichi, M. Ichikawa, T. Koyama, Y. Taniguchi, “High mobility n-type transistors based on N,N'-ditridecyl perylene diimide with thermal tretments”, Appl. Phys. Lett. 89, 112108 (2006).
[12]. C. D. Dimitrakopoulos, P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronic”, Adv. Mater. 14, 99 (2002).
[13]. Y. Sun, Y. Liu, D. Zhu, “Advanced in organic field-effect transistors”, J. Mater. Chem. 15, 53 (2005).
[14]. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Bre′das, P. C. Ewbank, K. R. Mann, “Introduction to Organic Thin Film Transistors and Design of n-channel Organic Semiconductors”, Chem. Mater. 16, 4436 (2004).
[15]. M.-M. Ling, Z. Bao, P. Erk, M. Koenemann, M. Gomez, “Complementary inverter using high mobility air-stable perylene di-imide derivatives”, Appl. Phys. Lett. 90, 093508 (2007).
[16]. S.M. Sze, “Semiconductor devices”, Wiley, New York, p.169 (2002).
[17]. H. Koezuka, A. Tsumura, T. Ando, “Field-effect Transistors with polythiophene thin film”, Synth. Met. 18, 699 (1987).
[18]. 林士廷, “有機發光二極體光源之偏極化研究”,國立成功大學碩士論文 (2004).
[19]. D. R. T. Zahn, T. U. Kampen, H. Méndez, “Transport gap of organic semiconductors in organic modified Schottky contacts”, Appl. Surf. Sci. 212-213, 423 (2003).
[20]. J. R. Ostrick, A. Dodabalapur, L. Torsi, A. J. Lovinger, E. W. Kwock, T. M. Miller, M. Galvin, M. Berggren, H. E. Katz, ”Conductivity-type anisotropic in molecular solids”, J. Appl. Phys. 81, 6804 (1997).
[21]. 黃銘湧,“具不同烷基駢苯衍生物之有機薄膜電晶體特性研究”,國立成功大學碩士論文 (2007)
[22]. P. A. Antunes, C. J. L. Constantino, R. F. Aroca, J. Duff, “Langmuir and Langmuir-Blodgett Films of Perylene Tetracarboxylic Derivatives with Various Alkyl Chain length: Film Packing and Surfce-Enhanced Fluorescence Studies”, Langmuir 17, 2958 (2001).
[23]. 劉彥怡,“駢苯衍生物的蕭特基能障研究”,國立台南大學碩士論文 (2005).
[24]. Skoog,林敬二(審譯),儀器分析第五版,美亞書版股份有限公司。 (1994).
[25]. P. A. Antunes, C. J. L. Constantino, R. Aroca, J. Duff, “Reflection Absorption Infrared Spectra of Thin solid Films molecular Orientation and Film Structure” Appl. Spectrosc. 55 1341 (2001).
[26]. 郭家瑋,“有機薄膜電晶體之載子傳輸研究”,國立成功大學博士論文 (2006).
[27]. L.E. Alexander, “X-Ray Diffraction methods in polymer science”, Wiley, New York, p.429 (1969).