簡易檢索 / 詳目顯示

研究生: 顏誌男
Yan, Jhih-Nan
論文名稱: 金屬嵌入式光罩應用於次微米黃光微影製程與圖案化藍寶石基板
Metal Embedded Photo-mask for Sub-Micrometer Scaled Photolithography and Fabrication of Patterned Sapphire Substrate
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 74
中文關鍵詞: 金屬嵌入式石英光罩金屬嵌入式PDMS光罩圖案化藍寶石基板接觸式黃光微影製程
外文關鍵詞: Metal-embedded quartz photo-mask, Metal-embedded PDMS photo-mask, Pattern sapphire substrates, Contact photolithography
相關次數: 點閱:120下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種具次微米特徵尺寸之金屬嵌入式光罩的製程技術,並應用於藍寶石基板上製作光阻結構,再經由乾式蝕刻產生可應用於高亮度發光二極體 (LED) 的圖案化藍寶石基板。本論文分別研究二種金屬嵌入式光罩;一是硬式的石英基板光罩,首先以接觸轉印與光罩植入式顯影技術在石英基板上定義出次微米線寬的圖形,配合乾式蝕刻與金屬蒸鍍完成金屬嵌入式石英光罩;二是軟式的聚二甲基矽氧烷 (PDMS) 光罩,以金屬轉印直接移除表面蒸鍍金屬層,完成模仁洞內含有金屬層的PDMS軟性模仁。二種光罩都可用於一般的接觸式黃光微影製程,且都具有小線寬、製程簡單、成本低廉...等等的優點。其中,PDMS 軟模光罩的可撓性佳、且具優良的表面貼附性,因此非常適合應用於LED產業中圖案化藍寶石基板的大面積與量產製成。
    目前本文成功地利用硬式石英光罩在藍寶石基板上製作線寬1 µm、週期2 µm 及光阻柱高度為1.3 µm 的六角最密堆積排列的結構;也成功利用PDMS軟模光罩於2吋藍寶石基板上製作線寬1 µm、週期2 µm 及光阻柱高度為1.4 µm 的六角最密堆積排列的結構,配合乾式蝕刻製作圖案化藍寶石基板。

    This thesis develops a new type of metal-embedded photo-masks which can be used in standard photolithography and for fabricating patterned sapphire substrates. There are two kinds of metal-embedded photo-masks being investigated. First, a quartz-based metal-embedded photo-mask is prepared by metal contact printing lithography and metal lift-off process. Secondly, a metal-embedded PDMS photo-mask is obtained by directly peeling off the metal film deposited on the top surface of a PDMS mold, while leaving remaining metal patterns in the bottom surface. Both types of metal-embedded photo-masks can be used for conventional contact photolithography with the obvious advantage of small line-width, simple fabricating process, low cost. Furthermore, the soft PDMS photo-mask has excellent flexibility and conformability, which make it particularly suitable for large-area and industry-level manufacturing of patterned sapphire substrates in LED industries.
    In this work, the metal-embedded photo-masks are applied to photolithographic patterning of photo-resist (PR) microstructures on top of sapphire substrates. By using the quartz photo-mask, hexagonal arrays of PR micro-pillars with a diameter around 1 m and a height of 1.3 m are achieved. For the soft PDMS photo-mask, hexagonal arrays of PR micro-pillars with a diameter around 1 m and a height of 1.4 m are successfully created on a 2 inch sapphire substrate. Subsequently, the pattern sapphire substrates (PSS) for LEDs can be readily obtained by applying ICP etching on this PR-patterned sapphire substrate.

    摘要.....................................................I Abstract................................................III 致謝.....................................................V 目錄.....................................................VI 圖目錄...................................................IX 表目錄...................................................XII 第一章 導論...............................................1 1-1 前言.................................................1 1-2 文獻回顧..............................................3 (a).近接式曝光............................................3 (b).投影式曝光............................................4 (c).接觸式曝光............................................6 1-3研究動機與目的..........................................10 1-4論文架構...............................................14 第二章 實驗方法與設備.......................................16 2-1前言..................................................16 2-2 接觸轉印與光罩植入式顯影技術.............................18 2-3 製程設備簡介..........................................20 2-4模仁準備...............................................26 2-4.1矽模仁準備...........................................26 2-4.2 PDMS模仁製作........................................29 第三章 次微米石英光罩製作與曝光結果分析........................31 3-1 前言.................................................31 3-2 金屬嵌入式石英光罩製作..................................33 3-2.1 次微米圖形定義.......................................33 3-2.2 金屬嵌入式石英光罩製作................................37 3-3 曝光機構設計與曝光結果..................................40 3-3.1 可加壓曝光機構.......................................40 3-3.2 氣壓缸曝光機構.......................................45 第四章 次微米PDMS光罩製作與圖案化藍寶石........................52 4-1 前言..................................................52 4-2 PDMS軟性光罩製作.......................................53 4-2.1 垂直式蒸鍍法製作PDMS光罩..............................54 4-2.2 旋轉式蒸鍍法製作PDMS光罩..............................56 4-3曝光機構設計與曝光結果....................................59 4-3.1 曝光機構設計.........................................59 4-3.2 曝光結果.............................................62 4-4 圖案化藍寶石基板........................................65 第五章 結論與未來展望........................................66 5-1 結論..................................................66 5-2 未來展望...............................................68 參考文獻..................................................69

    [1]Y. Choi, S. Hong and L. P. Lee (2009), “Shadow overlap ion-beam lithography for nanoarchitectures,” Nano Lett., 9(11), pp. 3726-3731.
    [2]J. A. Gardener and J. A. Golovchenko (2012), “Ice-assisted electron beam lithography of grapheme,” Nanotechnology, 23(18), p. 185302.
    [3]Y. C. Yee and C. Y. Chiu (2008), “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching,” J. Micromech. Microeng, 18(7), p. 075013.
    [4]J. A. Rogers, K. E. Paul, R. J. Jackman and G. M. Whitesidesa (1997), “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett., 70(20), pp. 2658–2660.
    [5]J. A. Rogers, M. Meier and A. Dodabalapur (1998), “Using stamping and molding techniques to produce distributed feedback and bragg reflector resonators for plastic lasers,” Appl. Phys. Lett., 73(13), pp. 1766-1768.
    [6]J. Du, Q. Huang, J. Su, Y. Gun and Z. Cui (1999), “New Approaches to Optical Proximity Correction in Photolithography,” Microelec. Eng., 46(1-4), pp. 73-76.
    [7]Z. Cui, J. Du, Q. Huang, J. Su and Y. Guo (2000), “Optical proximity correction by grey tone photolithography,” Microelec. Eng., 53(1-4), pp. 153-156.
    [8]J. C. Love, D. B. Wolfe, H. O. Jacobs and G. M. Whitesides (2001), “Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography,” Langmuir, 17(19), pp. 6005-6012.
    [9]K. W. Kwon, J. C. Choi, K. Y. Suh and J. Doh (2011), “Multiscale fabrication of multiple proteins and topographical structures by combining capillary force lithography and microscope projection photolithography,” Langmuir, 27(7), pp. 3238–3243.
    [10]http://www.isu.edu.tw/upload/81201/43/news/postfile_11516.pdf
    [11]J. G. Goodberlet (2000), “Patterning 100 nm features using deep-ultraviolet contact photolithography,” Appl. Phys. Lett., 76(6), pp. 667-669.
    [12]J. G. Goodberlet and B. L. Dunn (2000), “Deep-ultraviolet contact photolithography,” Microelec. Eng., 53(1-4), pp. 95-99.
    [13]F. D. Lai, J. M. Hua and H. M. Huang (2007), “Application of an alternating phase-shifting mask design method to near-field photolithography for fabricating more than 2 GHz SAW devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 54(10), pp. 2208-2013.
    [14]F. D. Laia, J. M. Huaa and H. M. Huang (2008), “Study and fabrication of maximum operating frequency of SAW filters as using I-line source,” 6th WSEAS International Conference on Applied Electromagnetics, Wireless and Optical, pp. 28-31.
    [15]T. W. Lee, S. Jeon, J. Maria, J. Zaumseil, J.  W.  P. Hsu and J.  A. Rogers (2005), “Soft-Contact optical lithography using transparent elastomeric stamps: Application to nanopatterned organic light-emitting devices,” Adv. Funct. Mater., 15(9), pp. 1435-1439.
    [16]J. Maria, S. Jeon and J. A. Rogers (2004), “Nanopatterning with conformable phase masks,” J. Photochem. Photobiol. A, 166(1-3), pp. 149-154.
    [17]佳晶科技股份有限公司,http://www.procrystal.com.tw/products.html
    [18]施錫龍、蔡來福、文翔昇、載寶通、丁永強、許丕明、李明峻 (2005), 「65奈米光罩製作」,奈米通訊, 第十二卷第一期, 頁 33-37.
    [19]S. Y. Chou, P. R. Krauss and P. J. Renstrom (1996), “Nanoimprint lithography,” J. Vac. Sci. Technol. B, 14(6), pp. 4129-4133.
    [20]M. Bender, M Otto, B. Hadan, B. Vratzov, B. Spangenberg and H. Kurz (2000), “Fabrication of nanostructures using a UV-based imprint technique,” Microelec. Eng., 53(1-4), pp. 233-236.
    [21]M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil and L. Montelius (2002), “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelec. Eng., 61-62, pp. 441-448.
    [22]Y. Xia and G. M. Whitesides (1998), “Soft lithography,” Annu. Rev. Mater. Sci., 28, 153-184.
    [23]謝易達,李永春(99),「奈米壓印與金屬轉印技術應用於提升發光二極體發光效率」,國立成功大學機械工程學系碩士論文
    [24]高國倫、李永春(100),「接觸式金屬轉印與體加工蝕刻製程應用於三維次微米結構之製作」,國立成功大學機械工程學系碩士論文。
    [25]T. S. Oh, S. H. Kim, T. K. Kim, Y. S. Lee, H. Jeong, G. M. Yang and E. K. Suh (2008), “Gan-based light-emitting diodes on micro-lens patterned sapphire substrate,” Jpn. J. Appl. Phys., 47(7), pp. 5333-5336.
    [26]J. H. Cheng, Y. S. Wu, W. C. Liao and B. W. Lin (2010), “Improved crystal quality and performance of GaN-based light-emitting diodes by descreasing the slanted angle of patterned sapphire,” Appl. Phys. Lett., 96, p. 051109.
    [27]H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu and C. F. Lin (2006), “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology, 17(12), pp. 2998-3001.
    [28]T. S. Kim, S. M. Kim, Y. H. Jang and G. Y. Jung (2007), “Increase of light extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography,” Appl. Phys. Lett., 91(17), p. 171114.
    [29]J. Wang, L. W. Guo, H. Q. Jia, Z. G. Xing, Y. Wang, J. F. Yan, N. S. Yu, H. Chen and J. M. Zhou (2006), “Investigation of characteristics of laterally overgrown GaN on striped sapphire substrates patterned by wet chemical etching,” J. Crystal Growth, 290(2), pp. 398-404.
    [30]Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo and S. C. Wang (2006), “Enhancing the output power of Gan-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE photon. Technol. Lett., 18(10), pp. 1152-1154.
    [31]H. W. Huang, C. H. Lin, J. K. Huang, K. Y. Lee, C. F. Lin, C. C. Yu, J. Y. Tsai, R. Hsueh, H. C. Kuo and S. C. Wang (2009), “Investigation of GaN-based light emitting diodes with nano-hole patterned sapphire substrate (NHPSS) by nano-imprint lithography,” Mater. Sci. Eng. B, 164(2), pp. 76-79.
    [32]H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng and G. H. Wang (2007), “Improvement of the performance of GaN-based LEDs grown on sapphire substrates patterned by wet and ICP wtching,” Solid State Electronics, 52(6), pp. 962-967.
    [33]H. Y. Shin, S. K. Kwon, Y. I. Chang, M. J. Cho and K. H. Park (2009), “Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate,” J. Crystal Growth, 311(17), pp. 4167-4170.
    [34]Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li and C. C. Kao (2009), “Pattern-size dependence of characteristics of nitride-based LEDs grown on patterned sapphire substrates,” J. Crystal Growth, 311(10), pp. 2973-2976.

    下載圖示 校內:2017-08-30公開
    校外:2017-08-30公開
    QR CODE