| 研究生: |
鄭煜舜 Cheng, Yu-Shun |
|---|---|
| 論文名稱: |
鎂離子摻雜之 YAG: Tb 螢光粉體其晶體結構與光學性質 Crystal Structure and Optical roperties of YAG: Tb Fluorescent Powder Doped with Magnesium Ions |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 176 |
| 中文關鍵詞: | 噴霧乾燥 、釔鋁石榴石 、鋱 |
| 外文關鍵詞: | Spray drying, YAG, Terbium |
| 相關次數: | 點閱:93 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統 YAG 螢光粉體之研究中,主要以三價稀土元素取代八配位的三價釔離子位置,扮演活化者的角色,使 YAG 粉體具有發光特性。本研究利用控制 pH 值的方式,使固相反應物均勻混合,並搭配噴霧乾燥之造粒技術,以求於固態反應法下,合成 YAG: (Tb, Mg) 螢光粉體。並藉由鎂離子和鋱離子的共添加,配合空氣氣氛下進行二次熱處理 (annealing),控制部分四價鋱離子穩定於 YAG 主體晶格中,以改變原本單純以三價鋱離子摻雜於 YAG 的發光性質。
研究結果得知,鎂共添加系統的螢光粉體在無持溫 (1600℃/ 0 h) 時會形成少許 YAP 相,且隨著鎂離子含量越高,還可觀察到 MgAl2O4 相的生成;而持溫時間增加或二次熱處理之後,YAP 相隨即消失,但 MgAl2O4 相則會越趨明顯。晶格常數方面,不論是持溫時間增加、鎂離子含量提高或二次熱處理後,都會造成晶格常數縮減;而鎂離子添加量 2.5 at. % 前後,晶格常數變化減緩,推測已達固溶極限。
隨著溫度或持溫時間提高後,由於螢光粉體的晶粒大小與結晶性提高,造成發光強度的增加。但由於鎂離子添加對晶粒成長的抑制,以及 MgAl2O4 等雜相的生成,故 YAG: (Tb, Mg) 系統相較於 YAG: Tb 系統,發光強度明顯較低。在二次熱處理後,發現 YAG: (Tb, Mg) 螢光粉體的發光強度有明顯提高,但因粉體同時有鋱離子價數改變、第二相及微結構等變因,故無法確定造成其改變的機制。
In general investigations in YAG phosphors field, using trivalence rare earth ions as activators to substitute yttrium ions located in dodecahedral sites is popular. The topics in this study are combining pH-controlled mixing and spray drying processing to synthesize YAG: (Tb, Mg) phosphors with solid-state reaction method. Besides, we used Tb-Mg co-doping annealed in air atmosphere to stabilize partial Tb4+ ions into YAG host and to change the original luminescence properties of pure Tb3+ doped YAG phosphors system.
YAP phase was detected in Tb-Mg co-doped YAG phosphors (1600℃/ 0 h). As the amount of MgO increasing, MgAl2O4 phase was also detected in these samples. After long term heat treatment, YAP phase disappeared instead to MgAl2O4 phase. Increasing the amount of MgO or holding time will cause the decreasing of cell parameters, so do annealing operation. Besides, the limit substitution of MgO (2.5 at. %) was observed with the cell parameters retarding phenomenon.
As rising the holding time, the morphology and crystallinity will become better so as increasing the emission spectral intensity. Comparing with Tb doping system, the inhibition to grain growth and the formation of MgAl2O4 phase would lower the emission spectral intensity in Tb-Mg co-doping system more significantly. After annealing operation, the emission spectral intensity of Tb-Mg co-doped YAG phosphors increase obviously.
1. H. S. Yoder and M. L. Keith, “Complete Substitution of Aluminum for Silicon: the System 3MnO.Al2O3.3SiO2-3Y2O3.5Al2O3,” American Mineralogist, 36, 519 (1951).
2. 陳昱霖,石榴石 (Y3Al5O12) 螢光體之合成與性質研究,國立成功大學材料科學及工程學系碩士論文,民國 90 年。
3. 谷繁雄,光材料,化?u No. 39 無機光化,社法人日本化,日本東京都,195-205 頁,1983。
4. S. Shirakura, K. Toda, Y. Imanari, T. Nonogawa, K. Uematsu, M. Sato, Y. Nishisu and M. Kobayashi, “Sol-Gel Synthesis of Long Persistent Phosphor Sr2MgSi2O7: Eu, Dy Thin Film,” Journal of the Ceramic Society of Japan, 113 [7], 484-487 (2005).
5. 溫佑良,不同粒徑釔鋁石榴石摻鈰螢光體之合成與性質研究,國立成功大學材料科學及工程學系碩士論文,民國 92 年。
6. 黃渝晨,硫化鋅共摻雜銅、錳之發光特性研究,逢甲大學化學工程學系碩士論文,民國 92 年。
7. R. Roy, Experimenting with Truth, Pergamon, New York (1980).
8. 劉如熹、王健源,白光發光二極體製作技術,全華圖書,台灣台北,2001。
9. 寺主一成,色,日刊工業新聞社,日本東京都,2-10 頁,
1991。
10. 蔡濱祥,尖晶石系 (MgxZn1-x)(In2-yGay)O4: (Eu3+, Tb3+) 螢光粉體製備及其光致發光特性研究,國立成功大學材料科學及工程學系博士論文,民國 94 年。
11. M. Fox, Optical Properties of Solids, Oxford University Press, United Kingdom, 169-183 (2001).
12. 劉如熹、紀喨勝,紫外光發光二極體用螢光粉介紹,全華圖書,台灣台北,2002。
13. A. Putnis, Introduction to Mineral Science, Cambridge University Press, New York (1992).
14. D. J. Robbins, “The Effect of Crystal Field and Temperature on the Photo-luminescence Excitation Efficiency of Ce3+ in YAG,” Journal of Electrochemical Society, 126 [9] 1550-1555 (1979).
15. G. H. Dieke, “Spectra and Energy Levels of Rare Earth Ions in Crystals,” Interscience, New York (1968); American Institute of Physics Handbook, McGraw Hill, New York, 7-39 (1963).
16. M. J. Weber, Phosphor Handbook, CRC Press, Boca Raton (1999).
17. G. Blasse and B. C. Grabmaier, Luminescent Materials, Springer-Verlag, New York, (1994).
18. H. Yamamoto, Phosphor Global Summit, March 19, Phoenix, Arizona, USA (2003).
19. J. A. Deluca, “An Introduction to Luminescence in Organic Solids,” Journal of Chemical Education, 57 [8] 541-545 (1980).
20. 石景仁,白光發光二極體用之石榴石螢光粉合成及特性分析,國立台灣大學化學研究所碩士論文,民國90年。
21. K. M. Kinsman and J. McKittrick, “Phase Development and Luminescence in Chromium-doped Yttrium Aluminum garnet (YAG: Cr) Phosphors,” Journal of the American Ceramic Society, 77 [11] 2866-2872 (1994).
22. C. K. Ullal, K. R. Balasubramaniam, A. S. Gandhi and V. Jayaram, “Non-equilibrium Phase Synthesis in Al2O3-Y2O3 by Spray Pyrolysis of Nitrate Precursors,” Acta Materialia, [49] 2691-2699 (2001).
23. O. Muller and R. Roy, The Major Ternary Structural Families, Springer, New York, (1974).
24. L. Schuh, R. Metselaar and C. R. A. Catlow, “Computer Modelling Studies of Defect Structures and Migration Mechanisms in Yttrium Aluminum Garnet,” Journal of the European Ceramic Society, [7] 67-74 (1991).
25. R. D. Shannon and C. T. Prewitt, “Effective Ionic Radii in Oxides and Fluorides,” Acta Crystallographica, [25] 25-946 (1969).
26. 余樹楨,晶體之結構與性質,渤海堂文化事業,台灣台北,民國 76 年。
27. A. Ikesue, K. Kamata and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG Ceramics for High-efficiency Solid-state Lasers” Journal of the American Ceramic Society, 78 2545-2547 (1995).
28. Y. Pan, M. Wu, Q. Su, “Comparative Investigation on Synthesis and Photoluminescence of YAG: Ce Phosphor,” Materials Science and Engineering B, 106 251-256 (2004).
29. A. Nakamura, N. Nambu, K. Kawagara, S. Ohshio and H. Saitoh, “Powder of Y2O3: Eu Red Phosphor Synthesized from Metal-EDTA Complexes,” Journal of the Ceramic Society of Japan, 111 [2] 142-146 (2003).
30. M. Abdullah, I. W. Lenggoro, B. Xia and K. Okuyama, “Novel Processing for Softly Agglomerated Luminescent Y2O3: Eu3+ Nanoparticles Using Polymeric Precursors,” Journal of the Ceramic Society of Japan, 113 [1] 97-100 (2005).
31. R. kasuya, T. Isobe and H. Kuma, ”Glycothermal Synthesis and Photoluminescence of YAG: Ce3+ nanophosphors,” Journal of Alloys and Compounds, 408-412, 820-823 (2006).
32. M. Nishi, S. Tanabe, M. Inoue, M. Takahashi, K. Fujita and K. Hirao, “Optical-telecommunication-band Fluorescence Properties of Er3+-doped YAG Nanocrystals Synthesized by Glycothermal Method,” Optical Materials, 27 655-662 (2005).
33. M. Nishi, S. Tanabe, M. Inour, M. Takahashi, K. Fujita and K. Hirao, “Fluorescence Properties of Er3+ -Doped YAG Nanocrystals Synthesized by Glycothermal Method” Journal of the Ceramic Society of Japan, PacRim 5 Special Issue, 112 [5] S898-S900 (2005).
34. Y. Pan, M. Wu and Q. Su, “Comparative Investigation on Synthesis and Photoluminescence of YAG: Ce Phosphor,” Materials Science and Engineering B, 106 251-256 (2004).
35. Y. H. Zhou, J. Lin, M. Yu, S. M. Han, S. B. Wang and H. J. Zhang, “Morphology Control and Luminescence Properties of YAG: Eu Phosphors Prepared by Spray Pyrolysis,” Materials Research Bulletin, 38 1289-1299 (2003).
36. Y. C. Kang, I. W. Lenggoro, S. B. Park and K. Okuyama, “YAG: Ce Phosphor Particles Prepared by Ultrasonic Spray Pyrolysis,” Materials Research Bulletin, 35 789-798 (2000).
37. 鄭秀蘭,奈米顆粒之新噴霧熱裂解製程研究,中央研究院學術諮詢總會通訊,第十一卷第二期,101-103 頁,台灣台北,民國 91 年。
38. I. Matsubara, M. Paranthaman, S. W. Allison, M. R. Cates, D. L. Beshears and D. E. Holcomb, “Preparation of Cr-doped Y3Al5O12 Phosphors by Heterogeneous Precipitation Methods and Their Luminescent Properties,” Materials Research Bulletin, 35 217-224 (2000).
39. F. Yuan and H. Ryu, “Ce-doped YAG Phosphor Powders Prepared by Co-precipitation and Heterogeneous Precipitation,” Materials Science and Engineering B, 107 14-18 (2004).
40. J. A. Deluca, “An Introduction to Luminescence in Organic Solids,” Journal of Chemical Education, 57 [8] 541-545 (1980).
41. Y. Zhou, J. Lin, M. Yu and S. Wang, “Comparative Study on the Luminescent Properties of Y3Al5O12: RE3+ (RE: Eu, Dy) Phosphors Synthesized by Three Methods,” Journal of Alloys and Compounds, 375 93-97 (2004).
42. S. A. Gramsch and L. R. Morss, “Synthesis and Characterization of Charge-substituted Garnets YCaLnGa5O12 (Ln = Ce, Pr, Tb),” Journal of Alloys and Compounds, 207/208, 432-435 (1994).
43. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, Wiley, New York (1976).
44. D. Pawlak, Z. Frukacz, Z. Mierczyk, A. Suchocki, and J. Zachara, “Spectroscopic and Crystallographic Studies of YAG: Pr4+ Single Srystals,” Journal of Alloys and Compounds, 275/277, 361–364 (1998).
45. T. Okuno, K. Tanaka, and T. Suemoto, “Observation of Two Types of Spectral Holes in MgO-doped Y2O3: Pr3+ Crystals,” Optics Communications, 123 512-516 (1996).
46. T. Suemoto, T. Okuno, and D. Nakano, “Defect-induced Persistent Hole Burning in MgO-doped Pr3+: YAG Systems,” Optics Communications, 145 113-118 (1998).
47. J. Dong, P. Deng and J. Xu, “Study of the Effects of Cr ions on Yb in Cr, Yb: YAG Crystal,” Optics Communications, 170 255-258 (1999).
48. J. Dong, P. Deng and J. Xu, “Spectral and Luminescence Properties of Cr4+ and Yb3+ Ions in Yttrium Aluminum Garnet (YAG),” Optical Materials, 14 109-113 (2000).
49. J. R. Lo and T. Y. Tseng, “Effect of LiCl on the Crystallization Behavior and Luminescence of Y3Al5O12: Tb,” Materials Chemistry and Physics, 57 95-98 (1998).
50. Y. C. Kang, I. W. Lenggoro, S. B. Park and K. Okuyama, “Photoluminescence Characteristics of YAG: Tb Phosphor Particles with Spherical Morphology and Non-aggregation,” Journal of Physics and Chemistry of Solids, 60 1855-1858 (1999).
51. J. Y. Choe, D. Ravichandran, S. M. Blomquist, K. W. Kirchner, E. W. Forsythe and D. C. Morton, “Cathodoluminescence Study of Novel Sol-gel Derived Y3-xAl5O12: Tbx Phosphors,” Journal of Luminescence, 93 119-128 (2001).
52. J. J. Zhang, J. W. Ning, X. J. Liu, Y. B. Pan and L. P. Huang, “A Novel Synthesis of Phase-pure Ultrafine YAG: Tb Phosphor with Different Tb Concentration,” Materials Letters, 57 3077-3081 (2003).
53. J. J. Zhang, J. W. Ning, X. J. Liu, Y. B. Pan and L. P. Huang, “Synthesis of Phase-pure Ultrafine YAG: Tb Phosphor by Nitrate-citrate Sol-gel Combustion Process,” Materials Research Bulletin, 38 1249-1256 (2003).
54. Y. Hakuta, T. Haganuma, K. Sue, T. Adschiri and K. Arai, “Continuous Production of Phosphor YAG: Tb Nanoparticles by Hydrothermal Synthesis in Supercritical Water,” Materials Research Bulletin, 38 1257-1265 (2003).
55. D. Hreniak, W. Strek, P. Mazur, R. Pazik and M. Zabkowska-Waclawek, “Luminescence Properties of Tb3+: Y3Al5O12 Nanocrystallites Prepared by the Sol-gel Method,” Optical Materials, 26 117-121 (2004).
56. K. Y. Jung, D. Y. Lee and Y. C. Kang, “Morphology Control and Luminescence Properties of Y3Al5O12: Tb Particles Prepared by Spray Pyrolysis,” Materials Research Bulletin, 40 2212-2218 (2005).
57. X. Li, H. Liu, J. Wang, H. Cui, S. Yang and I. R. Boughton, “Solvothermal Synthesis and Luminescence Properties of YAG: Tb Nano-sized Phosphors,” Journal of Physics and Chemistry of Solids, 66 201-205 (2005).
58. G. Xia, S. Zhou, J. Zhang, S. Wang and J. Xu, “Solution Combustion Synthesis, Structure and Luminescence of Y3Al5O12: Tb3+ Phosphors,” Journal of Alloys and Compounds, available online 15 Dec. (2005).
59. Y. S. Lin, R. S. Liu and B. M. Cheng, “Investigation of the Luminescent Properties of Tb3+-Substituted YAG: Ce, Gd Phosphors,” Journal of The Electrochemical Society, 152 (6) J 41-J 45 (2005).
60. S. Zhou, Z. Fu, J. Zhang and S. Zhang, “Spectral Properties of Rare-earth Ions in Nanocrystalline YAG: Re (Re= Ce3+, Pr3+, Tb3+),” Journal of Luminescence, 118 179-185 (2006).
61. S. Saxena, “Sol-gel Preparation and Optical Characterization of TbxY3-xAl5O12,” Materials Letters, 60 1315-1318 (2006).
62. J. Zhou, F. Zhao, X. Wang, Z. Li, Y. Zhang and L. Yang, “Template Synthesis and Luminescent Properties of Nano-sized YAG: Tb Phosphors,” Journal of Luminescence, 119-120 237-241 (2006).
63. 楊智量,藉 pH 值控制混和之固相反應製備的 YAG:Ce 粉體分析及其螢光性質,國立成功大學資源工程研究所碩士論文,民國 94 年。
64. 劉康權,次微米級螢光粉噴霧乾燥製程之研究,國立交通大學應用化學研究所碩士論文,民國 93 年。
65. 鄭兆祺,以 pH 值調整之固相反應搭配噴霧乾燥法製備不同鈰摻雜量之 YAG 螢光體與性質研究,國立成功大學資源工程系學士專題,民國 94 年。
66. C. Y. Huang, Thermal Expansion Behavior of Sodium Zirconium Phosphate Structure Type Materials, Ph. D. thesis, The Pennsylvania State University, U. S. A. (1990).
67. 許樹恩、吳泰伯,X 光繞射原理與材料結構分析,中國材料科學學會,台灣台北,民國 82 年。
68. 劉文貴,(Na0.5K0.5)NbO3 - SrZrO3 系統之合成、分析、及介電性質,國立成功大學資源工程研究所碩士論文,民國 94 年。
69. A. C. Larson and R. B. Von Dreele, “General Structure Analysis System,” Los Alamos National Laboratory, Los Alamos (1988).
70. 李玄閔,不同粒徑分佈與凝聚狀態之 氧化鋁粉末的成型及燒結行為,國立成功大學資源工程研究所碩士論文,民國 93 年。
71. 郭政男,以水熱法合成 (Ba1-xCax)(Ti1-yZry)O3 奈米粉末之研究,國立成功大學資源工程研究所碩士論文,民國 94 年。
72. 汪建民,材料分析,中國材料科學學會,台灣台北,民國 87 年。
73. 郭家宏,解凝效果與氧化鋯磨屑對 -氧化鋁微粉燒結行為的影響,國立成功大學資源工程研究所碩士論文,民國 94 年。
74. 歐建志,(Ba(1-x)Srx)5Nb4O15 陶瓷材料的結構與微波介電性質,國立成功大學資源工程研究所碩士論文,民國 94 年。
75. 黃恩萍,角閃石類礦物之拉曼光譜研究,國立成功大學地球科學研究所碩士論文,民國 92 年。
76. G. Socrates, Infrared and Raman Characteristic Group Frequencies, third Edition, Wiley, New York (2001).
77. 吳承容,熱處理鐿釔鋁石榴石晶體 (Yb: YAG) 之光學性質研究,天主教輔仁大學物理學系研究所碩士論文,民國 93 年。
78. J. F. Moulder, J. Chastain and R. C. King, Handbook of X-ray Photoelectron Spectroscopy: a Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics Division, Eden Prairie, Minnesota, USA (1995).
79. 高紀明、肖漢寧與杜海清,納米 Si3N4-SiC (Y2O-) 複合粉末的氨解溶膠-凝膠法合成,硅酸鹽學報,第五期,586-591 頁,1998 年。
80. H. X. Dai, C. F. Ng and C. T. Au, “SrCl2-Promoted REOx (RE = Ce, Pr, Tb) Catalysts for the Selective Oxidation of Ethane: A Study on Performance and Defect Structures for Ethane Formation,” Journal of Catalysis, 199 177-192 (2001).
81. G. Kalkowski, G. Kaindl, G. Wortmann, D. Lentz and S. Krause, ”4f-ligand Hybridization in CeF4 and TbF4 Probed by Core-level Spectroscopies,” Physical Review B, 37 1376-1382 (1988).