簡易檢索 / 詳目顯示

研究生: 鄭清俊
Cheng, Ching-Chun
論文名稱: 應用類神經網路與支援向量機於目標客戶選取
N/A
指導教授: 吳植森
Wu, Chih-Sen
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 78
中文關鍵詞: 資料探勘特徵選取類神經網路支援向量機遺傳演算法貝氏分類器
外文關鍵詞: N/A
相關次數: 點閱:71下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   商業環境不斷的變遷,各產業間競爭更加的激烈,面對微利時代的來臨,如何提高企業的利潤,保持競爭優勢,成為各個企業所必須面臨的問題。從早期大量生產的產品導向到目前小量多樣的顧客導向,再次說明整個商業型態主流製造業轉向服務業,而不再是單純的買賣關係,以客為尊、顧客至上,做好顧客關係管理 ,將是許多企業奉為圭臬;如何行銷才能提高顧客忠誠度,並從顧客身上獲取更多的利潤,從以往的大眾行銷到現在的目標行銷、直效行銷,都是企業努力的方向。為了將有限的行銷資源發揮到極限,精準的選取目標客戶對企業而言是非常重要的。面對複雜的目標客戶選取之問題,資料探勘是一可行與漸受廣泛應用的有利工具。資料探勘能從資料中找出顯著且有效的消費行為或模式,將能賦予企業更多的經營智慧。

      本研究以一保險公司(TIC:The Insurance Company)直效行銷資料集為例,期望建立一個目標客戶選取分類模式。首先利用簡易貝氏分類器(naïve bayes classifier)與簡易貝氏分類器結合遺傳演算法(genetic algorithm),分別找出與顧客回應有關的關鍵屬性欄位群,然後將被選出的關鍵屬性欄位群分別代入類神經網路(neural network)中的倒傳遞網路(back-propagation network,BPN)及支援向量機(support vector machine)建置目標客戶選取分類模式,以找出目標客戶,供業者做參考。

    N/A

    摘要 I 誌謝 II 目次 III 圖目錄 V 表目錄 VI 第一章 緒論 1 1.1研究背景及動機 2 1.2研究目的 4 1.3研究流程 4 1.4研究範圍及限制 6 第二章 文獻探討 7 2.1資料探勘 7 2.2特徵選取 10 2.3遺傳演算法 18 2.4貝氏分類法 21 2.5類神經網路 23 2.6支援向量機 28 第三章 研究方法 38 3.1研究架構及步驟 38 3.2選出關鍵特徵 40 3.3建立目標客戶選取分類模式 42 第四章 實證分析 47 4.1資料來源及使用軟體 47 4.2選取關鍵特徵 49 4.3目標客戶選取分類模式之驗證及分類結果比較 54 第五章 結論與建議 69 5.1研究結論 69 5.2研究建議 70 參考文獻 72 一、中文部分: 72 二、英文部分: 72 三、網站部分: 76 附錄-TIC資料集欄位說明 77

    一、中文部分:
    李昇暾(2001),顧客關係管理深度解析,ARC 遠擎管理顧問公司,頁99-111。
    周文賢(1999),行銷管理:市場分析與策略規劃,智勝出版,頁413。
    葉怡成(2001),類神經網路模式應用與實作,儒林圖書公司,台北。
    二、英文部分:
    Almuallim, H. and Dietterich, T.G.(1991), "Learning with many irrelevant features," Proceedings of the Ninth National Conference on Artificial Intelligence, pp.547-552.
    Berry, A. J.(1997), Data Mining Techniques:for Marketing ,Sales, and Customer Support, John Wiley and Sons, Canada.
    Berry, A.J. and Linoff, G.(2000), Mastering Data Mining: The Art and Science of
    Customer Relationship Management, John Wiley & Sons, Canada.
    Berson, A., Smith, S. and Thearling K.(2000), Building Data Mining Applications for CRM, McGraw–Hill, N.Y..
    Boritz, J. and Kennedy, D.(1995), "Effectiveness of neural network types for prediction ofbusiness failure," Expert Systems with Application, 9(4), pp.503-512.
    Cao, L. and Tay, FEH.(2001), “Financial forecasting using support vector machines,” Neural Comput Appl, 10(2), pp.184-192.
    Cardie, C.(1993), "Using decision trees to improve case-based learning," Proceedings of the Tenth International Conference on Machine Learning, pp.25-32.
    Caruana, R. A. and Freitag, D.(1994), "Greedy attribute selection," Proceedings of the Eleventh International Conference on Machine Learning, pp.28-36.
    Chen, M. S., Han, J. and Yu, P. S.(1996), “Data mining : an overview from a database perspective,” IEEE Transactions on Knowledge and Data Engineering, 8(6), pp.866–883.
    Cheung, K.W. , Kwok, J.T. , Law, M.H. and Tsui, K.C.(2003), “Mining customer product ratings for personalized marketing,” Decision Support Systems, 35(2), pp.231-243.
    Cortes, C. and Vapnik, V.(1995), “Support-vector networks,” Machine Learning, 20, pp.273-297.
    Cristianini, N. and Shawe-Taylor, J.(2000), An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, UK.
    Dash, M. and Liu, H.(1997), “Feature selection for classification,” Intelligent Data Analysis 1, pp.131-156.
    Duncan, G.(2001), Direct Marketing: How to Use the Internet、Direct Mail and Other Media to Generate Direct Sales, Adams media, MA.
    Dunja, M. and Morko, G.(2003), "Feature selection on hierarchy of web documents," Decision support systems, 35(1), pp.45-87.
    Fayyad, U. M.(1996), “Data mining and knowledge discovery : making sense out of data,” IEEE Expert, 11(10), pp.20–25.
    Freeman, J. A. and Skapura, D. M.(1992), Neural Networks Algorithms, Applications, and Programming Techniques, Addison-Wesley , N.Y..
    Friedman, N., Geiger, D. and Goldszmidt, M.(1997), “Bayesian Network Classifiers,” Machine Learning, 29, pp.131-161.
    Gately, E.(1996), Neural Networks for Financial Forecasting, John Wiley & Sons, Canada.
    Holland, J.H.(1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI.
    Huang, W. , Nakamori, Y. and Wang, S.Y.(2005), “Forecasting stock market movement direction with support vector machine,” Computers and Operations Research, 32(10), pp.2513-2522.
    Hughes, A.M.(1996), “Boosting response with RFM,” Marketing Tools, 5, pp.4-10.
    John, G. H., Kohavi, R. and Pfleger, K.(1994), "Irrelevant features and the subset selection problem," Proceedings of the Eleventh International Conference on Machine Learning, pp.121-129.
    Kaymak, U.(2001), “Fuzzy target selection using RFM variables,” IFSA World Congress and 20th NAFIPS International Conference Joint 9th, 2, pp.1038–1044.
    Kim, Y. and Nick, S. W.(2004), "An intelligent system for customer targeting: a data mining approach", Decision Support Systems, 37(2), pp.215-228.
    Kira, K. and Rendell, L.(1992), "A practical approach to feature selection," Proceedings of the Ninth InternationalConference on Machine Learning, pp.249-256.
    Koller, D. and Sahami, M.(1996), "Toward optimal feature selection," Proceedings of the Thirteenth International Conference on Machine Learning.
    Kubat, M., Flotzinger, D. and Pfurtscheller, G..(1993), "Discovering patterns in EEG signal: Comparative study of a few methods," Proceeding of the 1993 European Conference on Machine Learning, pp.367-371.
    Langley, P. and Sage, S.(1994), “Induction of Selective Bayesian Classifiers,” Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, pp.399-406.
    Lee, J.H. and Park, S.C.(2005), "Intelligent profitable customers segmentation system based on business intelligence tools," Expert Systems With Applications, 29(1), pp.145-152.
    Lewis, D. D.(1992), "Feature selection and feature extraction for text categorization," Proceedings of Speech and Natural Language Workshop, pp.212-217.
    Ling, C.X. and Li C.(1998), "Data mining for direct marketing: Problems and solutions," Knowledge Discovery & Data Mining (KDD-98), pp.73-79.
    Mark, A. and Geoffrey, H.(2003), “Benchmarking attribute selection techniques for discrete class data mining,” IEEE Transactions on Knowledge and Data Engineering, 15(6), pp.1437–1447.
    Mladenic´, D.(1995), “Automated model selection,” Proceedings of the MLNet Familiarisation Workshop: Knowledge Level Modelling and Machine Learning, pp.15.
    Moore, A. W. and Lee, M. S.(1994), "Efficient algorithms for minimizing cross validation error," Proceedings of the Eleventh International Conference on Machine Learning, pp.190-198.
    Peppers, D. and Rogers, M.(1999), The One to One Future, Doubleday, N.Y..
    Perner, P. and Apte, C.(2004), “Empirical Evaluation of Feature Subset Selection Based on a Real-world Data Set,” Engineering Applications of Artificial Intelligence, 17(3), pp.285-288.
    Pernkopf, F. and O’Leary, P.(2003), “Floating search algorithm for structure learning of Bayesian network classifiers,” Pattern Recognition Letters archive, 24(15), pp.2839-2848.
    Ribeiro, B.(2002), "On Data Based Learning Using Support Vector Clustering," Proceeding of the 9th International Conference on Neural Information Processing, 5 , pp.2516-2521.
    Robert, S. and Peter, K.(2003), “Bayesian Classification and Feature Reduction Using Uniform Dirichlet Priors.” IEEE Transaction on Systems, 33(3), pp.448-464.
    Singh, M. and Provan, G. M.(1996), "Efficient learning of selective Bayesian network classifiers," Proceedings of the Thirteenth International Conference on MachineLearning.
    Vapnik V.(1998), The Nature of Statistical Learning Theory, Springer-Verlag, New York.
    Vellido, A., Lisboba P. J. G. and Vaughan J.(1999), “Neural network in business : a suvey of applications,” Expert Systems with Application, 17(1), pp.51–70.
    West, D.(2000), “Neural network credit scoring models,” Computers and Operations Research, 27, pp.1131-1152.
    Woo, J.Y. , Bae, S.M. and Park, S.C.(2005), “Visualization method for customer targeting using customer map,” Expert Systems With Applications, 28(4), pp.763-772.
    三、網站部分:
    SQL Server 2005 White Paper
    http://www.microsoft.com/sql/2005/techinfo/default.asp
    The Insurance Company (TIC) Benchmark
    http://www.liacs.nl/~putten/library/cc2000/
    Weka
    http://www.cs.waikato.ac.nz/ml/weka/

    下載圖示 校內:2008-07-25公開
    校外:2010-07-25公開
    QR CODE