簡易檢索 / 詳目顯示

研究生: 林鼎鈞
Lin, Ding-Jyun
論文名稱: 硫磷配位基之釩錯化合物的合成與反應性的研究
Syntheses and Reactivity of High-valent Vanadium Complexes Baring with (Thiolato)Phosphine Ligands
指導教授: 許鏵芬
Hsu, Hua-Fen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 57
中文關鍵詞: 硫醇鹽類含硫自由基反應性
外文關鍵詞: vanadium, thiolate, thiyl radical, reactivity
相關次數: 點閱:151下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 含有硫自由基基團的金屬錯合物對於生物體內誘導蛋白質損害反應扮演著重要
    的角色。為了瞭解含硫自由基在生物分子內的反應,很多科學家致力於研究具有自
    由基性質的金屬硫醇錯合物其基礎化學反應性,基於這些動機,我們對於研究含硫
    醇基團的釩金屬錯合物及生物系統內釩金屬相關化學有著高度興趣,在本研究中,
    含釩金屬錯合物已經被合成出且鑑定, 分別是: [V(PS3”)(PS2”SH)] (1) ,
    [VIV(PS3”)(S-SPS1”) (2), [VIV(PS3”)(S-SOPS1”)] (3), 和 [VIV(PS3”)(RPS1”)L] (4) (L =
    H2O or CH3CN)。這些分子結構列於下圖,在本論文中對於這些金屬錯合物的化學性
    質有更進一步的發展及發表。

    Metal complexes containing thiyl radical play important roles for inducing protein
    damage. In order to understand the reaction of thiyl radical with biomolecules, lots of
    efforts have been devoted to understand the fundamental chemistry of metal thiolate
    complexes that might potentially have metal-bound thiyl radical. Based on these
    motivations, we have devoted to study vanadium thiolate complexes with the interest of
    understanding vanadium chemistry relevant to biological systems. At this particular work,
    four vanadium complexes have been synthesized and characterized. They are
    [V(PS3”)(PS2”SH)] (1) , [VIV(PS3”)(S-SPS1”)] (2), [VIV(PS3”)(S-SOPS1”)] (3), and
    [VIV(PS3”)(RPS1”)L] (4) (L = H2O or CH3CN). The molecular structures are shown
    below. The chemistry of these complexes are further developed and reported here.

    List of content Abstract ............................................................................................................................ I 中文摘要.......................................................................................................................... II Acknowledge (謝誌) .......................................................................................................III List of content................................................................................................................ IV List of Figures .................................................................................................................V List of Tables................................................................................................................ VII List of Schemes............................................................................................................. VII Abbreviations ..............................................................................................................VIII Chapter 1. Introduction...................................................................................................1 1-1 Vanadium in Biological Systems..............................................................................1 1-2 Examples of sulfur-based reactivity in metal thiolate complexes...............................2 1-3 Motivation of this work ............................................................................................4 Chapter 2. Result and Discussion ....................................................................................5 2-1 Synthesis and Characterization of [V(PS3”)(PS2”SH)] (1) ......................................5 2-2 Synthesis and Characterization of [V(PS3”)(S-SPS1”)] (2) ......................................11 2-3 Synthesis and Characterization of [VIV(PS3”)(S-SOPS1”)] (3) .................................16 2-4 Compare bond length and angle of [V(PS3”)(S-SPS1”)] and [V(PS3”)(S-SOPS1”] ...21 2-5 Synthesis and Characterization of [VIV(PS3”)(RPS1”)L] (4) ...................................22 2-6 Reaction of [V(PS3”)(PS2”SH)] (1) and [V(PS3”)(S-SPS1”)] (2) ............................27 Chapter 3. Conclusion ...................................................................................................35 Chapter 4. Experimental and Instruments Sections.....................................................36 General Procedures.......................................................................................................36 Synthesis of Complexes................................................................................................37 Physical methods..........................................................................................................38 Reference........................................................................................................................40 Appendix A.....................................................................................................................42 CheckCIF report of [V(PS3”)(PS2”SH)] (1) .................................................................42 Appendix B.....................................................................................................................46 CheckCIF report of [V(PS3”)(S-SPS1”)] (2) ..................................................................46 Appendix C.....................................................................................................................50 CheckCIF report of [V(PS3”)(S-SOPS1”)] (3) ...............................................................50 Appendix D.....................................................................................................................54 CheckCIF report of [VIV(PS3”)(RPS1”)L] (4) ...............................................................54 List of Figures Figure 1-1. The natural vanadium (IV) compound of Amanita muscaria............................1 Figure 1-2. The reactivity of complex A with H2O and CH3OH.........................................2 Figure 1-3. Redox interconversion reaction of Co(II) compound and Co(III) compound with the addition or removal of chloride anions. .................................................................3 Figure 1-4. Conversion of Ni Cl/Solv via reduction of LS-S→L(S-S)•-→(LS-+LS•) →{LS-+1/2 LS-S} and ligand rearrangement..........................................................................................3 Figure 1-5. The disulfide non-oxo vanadium(IV) ..............................................................3 Figure 1-6. The structures of tris(benzenethiolato)phosphine ligands, H3[PS3”] ................4 Figure 2-1. Synthesis of [V(PS3”)(PS2”SH)] (1)..............................................................5 Figure 2-2. ORTEP diagram of 1.2CH3CN (left) and the first coordination of vanadium center (right). H atoms and solvated molecules are omitted for clarity. ...............................6 Figure 2-3. The electronic spectrum of complex 1 in THF (0.17 mM) ...............................8 Figure 2-4. The 1H-NMR of complex 1 in CD2Cl2.............................................................9 Figure 2-5. The EPR spectrum of complex 1 in 2-methyl-THF. concentration : 5mM, temperature : 77K, the sweep range : 3000 to 4000, averaged Scans: 1, sampling time (s): 0.02039, field mod. amplitude (T): 0.00016, field mod. frequency (Hz): 100000, microwave frequency (Hz): 9.665596e+09 and microwave power (W): 0.015. .................10 Figure 2-5-1. The EPR spectrum of complex 1 in THF. concentration : 3mM, temperature : 4K, the sweep range : 2600 to 4200, averaged Scans: 1, sampling time (s): 0.02251, field mod. amplitude (T): 0.0006, field mod. frequency (Hz): 100000, microwave frequency (Hz): 9.625217e+09 and microwave power (W): 0.01002. ...............................................10 Figure 2-6. Synthesis of [V(PS3”)(S-SPS1”)] (2) ..............................................................11 Figure 2-7. ORTEP diagram of 2.2CH3CN (left) and the first coordination of vanadium center (right). H atoms and solvated molecules are omitted for clarity. .............................11 Figure 2-8. The electronic spectrum of complex 2 in DCM (0.16 mM)............................14 Figure 2-9. The 1H-NMR of complex 2 in CD2Cl2...........................................................15 Figure 2-10. Synthesis of [V(PS3”)(S-SOPS1”] (3)...........................................................16 Figure 2-11. ORTEP diagram of 3.0.5CH3CN.H2O (left) and the first coordination of vanadium center (right). H atoms and solvated molecules are omitted for clarity. .............17 Figure 2-12. The electronic spectrum of complex 3 in DCM (0.15 mM)..........................19 Figure 2-13. The EPR spectrum of complex 3. concentration : 5mM, temperature : 77K, the sweep range : 3000 to 4000, averaged Scans: 1, sampling time (s): 0.02039, field mod. amplitude (T): 0.00016, field mod. frequency (Hz): 100000, microwave frequency (Hz): 9.665596e+09 and microwave power (W): 0.015. ............................................................20 Figure 2-14. ORTEP diagram of left 2.2CH3CN, right 3.0.5CH3CN.H2O and the first coordination of vanadium. H atoms and solvated molecules are omitted for clarity. .........21 Figure 2-15. Synthesis of [VIV(PS3”)(RPS1”)L] (4) .........................................................22 Figure 2-16. ORTEP diagram of 4.CH3CN (left) and the first coordination of vanadium center (right). H atoms and solvated molecules are omitted for clarity. .............................22 Figure 2-17. The electronic spectrum of complex 4 in THF (16 mM) ..............................25 Figure 2-18. The 1H-NMR of complex 4 in CD2Cl2.........................................................26 Figure 2-19. The spectral change of [V(PS3”)(PS2”SH)] (1) (red line) with the addition of dioxygen from 0 minute to 55 minutes (blue line). Inset: The spectrum of [V(PS3”)(RPS1”)L] (4) in THF. .......................................................................................28 Figure 2-20. The spectral change of [V(PS3”)(PS2”SH)] (1) (red line) with 250 equivalents of TEMPO• from 0 min to 5 minutes (blue line). Inset: The spectrum of [V(PS3”)(RPS1”)L] (4) in THF. .......................................................................................29 Figure 2-21. The spectral change of [V(PS3”)(PS2”SH)] (1) (red line) with 15 equivalents of TEMPO-H from 0 min to 25 minutes (blue line). Inset: The spectrum of [V(PS3”)(RPS1”)L] (4) in THF. .......................................................................................30 Figure 2-22. The spectral change of [V(PS3”)(PS2”SH)] (1) (red line) with 5000 equivalents of H2O added (0-5 minutes) (blue line). Inset: The spectrum of [V(PS3”)(RPS1”)L] (4) in THF. .......................................................................................31 Figure 2-23. The spectral change of [V(PS3”)(S-SPS1”)] (2) (red line) with 50μL of O2(g) from 0 minute to 45 minutes (blue line). Inset: The spectrum of [V(PS3”)(PS2”SH)] (1) in CH2Cl2.............................................................................................................................32 Figure 2-24. The electronic spectrum of [V(PS3”)(S-SPS1”)] (2) in THF (black line) with the reaction of 1 eq. [Fe(Cp)2][PF6] after 5 minutes (red line)...........................................33 Figure 2-25. The electronic spectrum of [V(PS3”)(S-SPS1”)] (2) in THF (black line) with the reaction of 1eq. [Co(Cp)2] after 5 minutes (red line). ..................................................34 List of Tables Table 2-1. The crystallographic data of 1.2CH3CN............................................................6 Table 2-2. Selected bond distance (Å ) and angles (deg) of 1.2CH3CN...............................7 Table 2-3. The elementary analysis data of 1.2CH3CN ......................................................9 Table 2-4. The crystallographic data of 2.2CH3CN..........................................................12 Table 2-5. Selected bond distances (Å ) and angles (deg) of 2.2CH3CN............................13 Table 2-6. The elementary analysis data of 2.2CH3CN ....................................................15 Table 2-7. The crystallographic data of 3.0.5CH3CN.H2O...............................................17 Table 2-8. Selected bond distances (Å ) and angles (deg) of 3.0.5CH3CN.H2O.................18 Table 2-9. The elementary analysis data of 3.0.5CH3CN.H2O..........................................19 Table 2-10. Selected bond distances (Å ) and angles (deg) of 2.2CH3CN and 3.0.5CH3CN.H2O.................................................................................................................................21 Table 2-11. The crystallographic data of 4.CH3CN..........................................................23 Table 2-12. Selected bond distances (Å ) and angles (deg) of 4.CH3CN............................24 Table 2-13. The elementary analysis data of 4.CH3CN ....................................................26 List of Schemes Scheme 1-1. Double behavior of amavadin, AmavadinRed and AmavadinOx bear vanadium in oxidation state four and five. ..........................................................................................1 Scheme 2-1. The reaction of complex 1 and complex 2 ...................................................27 Scheme 2-2. The summary of syntheses and reactions. ....................................................35

    Reference
    1. Joslin Diabetes Centre, H. M. S., Boston, Massachusetts, Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414 (6865), 799-806.
    2. Gregory Huyer, S. L., John Kellyi, Jason Moffat, Paul Payette, Brian Kennedy, George Tsaprailis, Michael J. Gresser, and Chidambaram Ramachandran, Mechanism of
    Inhibition of Protein-tyrosine Phosphatases by Vanadate and Pervanadate. J. Biol. Chem. 1996, 272, 843-851.
    3. Hitoshi Michibata, M. Y., Masao Yoshihara, Norifumi Kawakami, Nobuo Yamaguchi, and Tatsuya Ueki, Genes and Proteins Involved in Vanadium Accumulation by Ascidians. American Chemical Society 2007, 974, 264-280.
    4. Patrick Frank, E. J. C., Robert M. K. Carlson, Britt Hedman and Keith O. Hodgson, Toward the Biological Reduction Mechanism of Vanadyl Ion in the Blood Cells of
    Vanadium Sequestering Tunicates. American Chemical Society 2007, 974, 281-295.
    5. Samet, A. J. G. a. J. M., Biological Effects of Vanadium in the Lung. American Chemical Society 2007, 974, 240-248.
    6. José A.L. da Silva, J. J. R. F. d. S., Armando J.L. Pombeiro, Amavadin, a vanadium natural complex: Its role and applications. Coordination Chemistry Reviews 2013, 257,
    2388– 2400.
    7. Magdalena Domarus, M. L. K., Joaquim MarÅ alo, Armando J. L. Pombeiro, and Jos Armando L. da Silva, Amavadin and Homologues as Mediators of Water Oxidation. Angew. Chem. 2016, 128, 1511 –1514.
    8. Sergej Naumov, a. C. S. n., Intramolecular Addition of Cysteine Thiyl Radical to Phenylalanine and Tyrosine in Model Peptides, Phe (CysS•) and Tyr(CysS•): A Computational Study. J. Phys. Chem. 2009, 113, 3560–3565.
    9. Schöneich, C., Mechanisms of Protein Damage Induced by Cysteine Thiyl Radical Formation. Chem. Res. Toxicol. 2008, 21, 1175–1179.
    10. Fontecave, M. O.-d.-C., S.Mulliez, E., Biological radical sulfur insertion reactions. Chemical Reviews 2003, 103 (6), 2149-2166.
    11. Chryssostomos Chatgilialoglu, C. F., Maurizio Guerra, Abdelouahid Samadi, and Vincent W. Bowry, The Reaction of Thiyl Radical with Methyl Linoleate: Completing the
    Picture. J. Am. Chem. Soc. 2017, 139, 4704−4714.
    12. Scho¨neich, T. N. a. C., Thiyl Radical Reaction with Thymine: Absolute Rate Constant for Hydrogen Abstraction and Comparison to Benzylic C-H Bonds. Chem. Res. Toxicol. 2003, 16, 1056-1061.
    13. Austin, R. N. G., J. T., Alkane-oxidizing metalloenzymes in the carbon cycle. Metallomics 2011, 3 (8), 775-787.
    14. Schöneich, C., Thiyl Radical Reactions in the Chemical Degradation of Pharmaceutical Proteins. Molecules 2019, 24, 4357.
    15. Jyun-An Yan, Z.-K. Y., Yu-Sen Chen, Ya-Ho Chang, Chiao-Ling Lyu, Chun-Gang Luo, Mu-Jeng Cheng, and Hua-Fen Hsu, Activation of O-H and C-O Bonds in Water and Methanol by a Vanadium-Bound Thiyl Radical. Chem. Eur. J. 2018, 24, 15190 – 15194.
    16. Ya-Ho Chang, C.-L. S., Ru-Rong Wu, Ju-Hsiou Liao, Yi-Hung Liu, and Hua-Fen Hsu, An Eight-Coordinate Vanadium Thiolate Complex with Charge Delocalization between
    V(V)Thiolate and V(IV)Thiyl Radical Forms. J. Am. Chem. Soc. 2011, 133, 5708–5711.
    17. Feng Jiang, M. A. S., Xiaobo Sun, Lin Jiang, Célia Fonseca Guerra,; Bouwman., a. E., Redox Interconversion between Cobalt(III) Thiolate and Cobalt(II) Disulfide Compounds. Inorganic Chemistry 2018, 57, 8796-8805.
    18. Anirban Bhandari, S. M., Akhilesh Kumar, Marilyn M. Olmstead and Apurba K. Patra., Nickel(II) Mediated Reversible Thiolate/Disulfide Conversion as a Mimic for a Key Step of The Catalytic Cycle of Methyl Coenzyme M Reductase. Angew. Chem. 2020, 59, 9177-9185.
    19. Lianke Wang, F. G. C. R., Christian Philouze,; Serhiy Demeshko, S. P. d. V., Franc Meyer, Marcello Gennari, Carole Duboca., Solvent- and halide- induced (inter)conversion between iron(II)-disulfide and iron(III) thiolate complexes. Chem. Eur. J. 2018, 24, 11973-11982.
    20. Hua-Fen Hsu, C.-L. S., Neeruganti O. Gopal, Chi-Chin Wu, Wei-Cheng Chu, Yi-Fang Tsai, Ya-Ho Chang, Yi-Hung Liu, Ting-Shen Kuo and Shyue-Chu Ke, Redox Chemistry in the Reaction of Oxovanadium(V) with Thiolate-Containing Ligands: the Isolation and Characterization of Non-Oxo Vanadium(IV) Complexes Containing Disulfide and Thioether Groups. Eur. J. Inorg. Chem. 2006, 1161–1167.
    21. Yan, J.-A., Chen, Yu-Sen, Chang, Ya-Ho, Tsai, Cheng-Yun, Lyu, Chiao-Ling, Luo, Chun-Gang, Lee, Gene-Hsiang, Hsu, Hua-Fen, Redox Interconversion of Non-Oxido Vanadium Complexes Accompanied by Acid–Base Chemistry of Thiol and Thiolate. Inorganic chemistry 2017, 56 (15), 9055-9063.
    22. Block, E.; Ofori-Okai, G.; Zubieta, J., 2-Phosphino- and 2-phosphinylbenzenethiols: new ligand types. J. Am. Chem. Soc. 1989, 111, 2327-2329.
    23. Cornman, C. R.; Stauffer, T. C.; Boyle, P. D., Oxidation of a Vanadium(V)−Dithiolate Complex to a Vanadium(V)−η2,η2-Disulfenate Complex. J. Am. Chem. Soc. 1997, 119, 5986–5987.
    24. Reger, D. L.; Little, C. A.; Lamba, J. J. S.; Brown, K. J.; Krumper, J. R.; Bergman, R. G.; Irwin, M.; Fackler Jr., J. P., Sodium Tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, Na[B(3,5-(CF3)3C6H3)4]. Inorg. Synth. 2004, 34, 5-8.
    25. Wu, A.; Mader, E. A.; Datta, A.; Hrovat, D. A.; Borden, W. T.; Mayer, J. M., Nitroxyl Radical Plus Hydroxylamine Pseudo Self-Exchange Reactions: Tunneling in Hydrogen Atom Transfer. J. Am. Chem. Soc. 2009, 131, 11985-11997.

    下載圖示 校內:2025-07-30公開
    校外:2025-07-30公開
    QR CODE