| 研究生: |
林鼎鈞 Lin, Ding-Jyun |
|---|---|
| 論文名稱: |
硫磷配位基之釩錯化合物的合成與反應性的研究 Syntheses and Reactivity of High-valent Vanadium Complexes Baring with (Thiolato)Phosphine Ligands |
| 指導教授: |
許鏵芬
Hsu, Hua-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 釩 、硫醇鹽類 、含硫自由基 、反應性 |
| 外文關鍵詞: | vanadium, thiolate, thiyl radical, reactivity |
| 相關次數: | 點閱:151 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
含有硫自由基基團的金屬錯合物對於生物體內誘導蛋白質損害反應扮演著重要
的角色。為了瞭解含硫自由基在生物分子內的反應,很多科學家致力於研究具有自
由基性質的金屬硫醇錯合物其基礎化學反應性,基於這些動機,我們對於研究含硫
醇基團的釩金屬錯合物及生物系統內釩金屬相關化學有著高度興趣,在本研究中,
含釩金屬錯合物已經被合成出且鑑定, 分別是: [V(PS3”)(PS2”SH)] (1) ,
[VIV(PS3”)(S-SPS1”) (2), [VIV(PS3”)(S-SOPS1”)] (3), 和 [VIV(PS3”)(RPS1”)L] (4) (L =
H2O or CH3CN)。這些分子結構列於下圖,在本論文中對於這些金屬錯合物的化學性
質有更進一步的發展及發表。
Metal complexes containing thiyl radical play important roles for inducing protein
damage. In order to understand the reaction of thiyl radical with biomolecules, lots of
efforts have been devoted to understand the fundamental chemistry of metal thiolate
complexes that might potentially have metal-bound thiyl radical. Based on these
motivations, we have devoted to study vanadium thiolate complexes with the interest of
understanding vanadium chemistry relevant to biological systems. At this particular work,
four vanadium complexes have been synthesized and characterized. They are
[V(PS3”)(PS2”SH)] (1) , [VIV(PS3”)(S-SPS1”)] (2), [VIV(PS3”)(S-SOPS1”)] (3), and
[VIV(PS3”)(RPS1”)L] (4) (L = H2O or CH3CN). The molecular structures are shown
below. The chemistry of these complexes are further developed and reported here.
Reference
1. Joslin Diabetes Centre, H. M. S., Boston, Massachusetts, Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414 (6865), 799-806.
2. Gregory Huyer, S. L., John Kellyi, Jason Moffat, Paul Payette, Brian Kennedy, George Tsaprailis, Michael J. Gresser, and Chidambaram Ramachandran, Mechanism of
Inhibition of Protein-tyrosine Phosphatases by Vanadate and Pervanadate. J. Biol. Chem. 1996, 272, 843-851.
3. Hitoshi Michibata, M. Y., Masao Yoshihara, Norifumi Kawakami, Nobuo Yamaguchi, and Tatsuya Ueki, Genes and Proteins Involved in Vanadium Accumulation by Ascidians. American Chemical Society 2007, 974, 264-280.
4. Patrick Frank, E. J. C., Robert M. K. Carlson, Britt Hedman and Keith O. Hodgson, Toward the Biological Reduction Mechanism of Vanadyl Ion in the Blood Cells of
Vanadium Sequestering Tunicates. American Chemical Society 2007, 974, 281-295.
5. Samet, A. J. G. a. J. M., Biological Effects of Vanadium in the Lung. American Chemical Society 2007, 974, 240-248.
6. José A.L. da Silva, J. J. R. F. d. S., Armando J.L. Pombeiro, Amavadin, a vanadium natural complex: Its role and applications. Coordination Chemistry Reviews 2013, 257,
2388– 2400.
7. Magdalena Domarus, M. L. K., Joaquim MarÅ alo, Armando J. L. Pombeiro, and Jos Armando L. da Silva, Amavadin and Homologues as Mediators of Water Oxidation. Angew. Chem. 2016, 128, 1511 –1514.
8. Sergej Naumov, a. C. S. n., Intramolecular Addition of Cysteine Thiyl Radical to Phenylalanine and Tyrosine in Model Peptides, Phe (CysS•) and Tyr(CysS•): A Computational Study. J. Phys. Chem. 2009, 113, 3560–3565.
9. Schöneich, C., Mechanisms of Protein Damage Induced by Cysteine Thiyl Radical Formation. Chem. Res. Toxicol. 2008, 21, 1175–1179.
10. Fontecave, M. O.-d.-C., S.Mulliez, E., Biological radical sulfur insertion reactions. Chemical Reviews 2003, 103 (6), 2149-2166.
11. Chryssostomos Chatgilialoglu, C. F., Maurizio Guerra, Abdelouahid Samadi, and Vincent W. Bowry, The Reaction of Thiyl Radical with Methyl Linoleate: Completing the
Picture. J. Am. Chem. Soc. 2017, 139, 4704−4714.
12. Scho¨neich, T. N. a. C., Thiyl Radical Reaction with Thymine: Absolute Rate Constant for Hydrogen Abstraction and Comparison to Benzylic C-H Bonds. Chem. Res. Toxicol. 2003, 16, 1056-1061.
13. Austin, R. N. G., J. T., Alkane-oxidizing metalloenzymes in the carbon cycle. Metallomics 2011, 3 (8), 775-787.
14. Schöneich, C., Thiyl Radical Reactions in the Chemical Degradation of Pharmaceutical Proteins. Molecules 2019, 24, 4357.
15. Jyun-An Yan, Z.-K. Y., Yu-Sen Chen, Ya-Ho Chang, Chiao-Ling Lyu, Chun-Gang Luo, Mu-Jeng Cheng, and Hua-Fen Hsu, Activation of O-H and C-O Bonds in Water and Methanol by a Vanadium-Bound Thiyl Radical. Chem. Eur. J. 2018, 24, 15190 – 15194.
16. Ya-Ho Chang, C.-L. S., Ru-Rong Wu, Ju-Hsiou Liao, Yi-Hung Liu, and Hua-Fen Hsu, An Eight-Coordinate Vanadium Thiolate Complex with Charge Delocalization between
V(V)Thiolate and V(IV)Thiyl Radical Forms. J. Am. Chem. Soc. 2011, 133, 5708–5711.
17. Feng Jiang, M. A. S., Xiaobo Sun, Lin Jiang, Célia Fonseca Guerra,; Bouwman., a. E., Redox Interconversion between Cobalt(III) Thiolate and Cobalt(II) Disulfide Compounds. Inorganic Chemistry 2018, 57, 8796-8805.
18. Anirban Bhandari, S. M., Akhilesh Kumar, Marilyn M. Olmstead and Apurba K. Patra., Nickel(II) Mediated Reversible Thiolate/Disulfide Conversion as a Mimic for a Key Step of The Catalytic Cycle of Methyl Coenzyme M Reductase. Angew. Chem. 2020, 59, 9177-9185.
19. Lianke Wang, F. G. C. R., Christian Philouze,; Serhiy Demeshko, S. P. d. V., Franc Meyer, Marcello Gennari, Carole Duboca., Solvent- and halide- induced (inter)conversion between iron(II)-disulfide and iron(III) thiolate complexes. Chem. Eur. J. 2018, 24, 11973-11982.
20. Hua-Fen Hsu, C.-L. S., Neeruganti O. Gopal, Chi-Chin Wu, Wei-Cheng Chu, Yi-Fang Tsai, Ya-Ho Chang, Yi-Hung Liu, Ting-Shen Kuo and Shyue-Chu Ke, Redox Chemistry in the Reaction of Oxovanadium(V) with Thiolate-Containing Ligands: the Isolation and Characterization of Non-Oxo Vanadium(IV) Complexes Containing Disulfide and Thioether Groups. Eur. J. Inorg. Chem. 2006, 1161–1167.
21. Yan, J.-A., Chen, Yu-Sen, Chang, Ya-Ho, Tsai, Cheng-Yun, Lyu, Chiao-Ling, Luo, Chun-Gang, Lee, Gene-Hsiang, Hsu, Hua-Fen, Redox Interconversion of Non-Oxido Vanadium Complexes Accompanied by Acid–Base Chemistry of Thiol and Thiolate. Inorganic chemistry 2017, 56 (15), 9055-9063.
22. Block, E.; Ofori-Okai, G.; Zubieta, J., 2-Phosphino- and 2-phosphinylbenzenethiols: new ligand types. J. Am. Chem. Soc. 1989, 111, 2327-2329.
23. Cornman, C. R.; Stauffer, T. C.; Boyle, P. D., Oxidation of a Vanadium(V)−Dithiolate Complex to a Vanadium(V)−η2,η2-Disulfenate Complex. J. Am. Chem. Soc. 1997, 119, 5986–5987.
24. Reger, D. L.; Little, C. A.; Lamba, J. J. S.; Brown, K. J.; Krumper, J. R.; Bergman, R. G.; Irwin, M.; Fackler Jr., J. P., Sodium Tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, Na[B(3,5-(CF3)3C6H3)4]. Inorg. Synth. 2004, 34, 5-8.
25. Wu, A.; Mader, E. A.; Datta, A.; Hrovat, D. A.; Borden, W. T.; Mayer, J. M., Nitroxyl Radical Plus Hydroxylamine Pseudo Self-Exchange Reactions: Tunneling in Hydrogen Atom Transfer. J. Am. Chem. Soc. 2009, 131, 11985-11997.