簡易檢索 / 詳目顯示

研究生: 徐承碩
Hsu, Cheng-Shuo
論文名稱: 無人四旋翼機容錯控制
Fault-Tolerant Control for Unmanned Quadrotors
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 71
中文關鍵詞: 四旋翼機錯誤偵測容錯控制驅動器異常
外文關鍵詞: Quadrotor, Fault detection, Fault tolerance control, Actuator fault
相關次數: 點閱:161下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要研究無人載具四旋翼機之姿態與運動控制,使其能沿期望之運動軌跡飛行,並探討四旋翼機在馬達有異常情況發生時,如何即時偵測出異常情況,並改變控制策略進行容錯控制,使其能在此異常狀況下繼續完成飛行任務或終止任務並降落。在本文開始會先對四旋翼機之動力學進行分析,建立其座標系統及動態模型,並推導一般情形下之控制器為何。在容錯控制部分,先利用Thau觀測器產生殘差訊號,進而得出異常情況為何,再根據不同異常情況,改變控制策略及控制律,使四旋翼機不會因此異常情形而失控造成危險,甚至能繼續完成飛行任務。本文最後模擬結果顯示當異常狀況發生後,能立即、準確得偵測出異常情況。在容錯控制部分,四旋翼機之姿態角與位置誤差也皆在可容許之範圍之內,證明本文容錯控制法之可行性。

    In this paper, a control strategy and control law are proposed to control a quadrotor when there is a fault in the actuator of the quadrotor, and try to make the quadrotor hover or fly along the desired trajectory. The derivation of the dynamic model of the quadrotor is studied for fault detection such that the faults in the actuators can be identified. When the faults are detected, the control strategy will change according to the situations of the faults. The simulation results show that when a fault occurs in the actuator, it can be detected immediately and effectively. The fault-tolerance control (FTC) strategy applied to the quadrotor can keep the quadrotor under control with limited position error.

    摘要 I SUMMARY II 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 本文架構 4 第2章 四旋翼機動態方程 5 2.1 四旋翼機基本飛行原理 5 2.2 四旋翼機動態方程式推導 6 2.3 四旋翼機姿態限制 11 第3章 四旋翼機控制器設計 13 3.1 四旋翼機動態控制特性分析 13 3.2 順滑控制器設計 19 3.3 五次多項式路徑規劃 20 第4章 四旋翼機容錯控制器設計 32 4.1 四旋翼機異常型態分析 32 4.2 四旋翼機偵錯系統 35 4.3 四旋翼機容錯控制策略 40 第5章 模擬結果 43 5.1 四旋翼機容錯控制模擬條件 43 5.2 失去部分可控性之模擬結果 44 5.3 定速鎖死之模擬結果 54 第6章 結論與未來展望 68 6.1 結論 68 6.2 建議與未來展望 69 參考文獻 70

    Cai, W., Liao, X. H., and Song, Y. D., “Indirect Robust Adaptive Fault-Tolerant Control for Attitude Tracking of Spacecraft,” J. Guidance, Control, and Dynamics, 31(5), pp. 1456-1463, 2008.
    Carrillo, L. R. G., López, A. E. D., Lozano, R., and Pégard, C., “Modeling the Quad-Rotor Mini-Rotorcraft,” Quad Rotorcraft Control, Advances in Industrial Control, pp. 23-34, 2013.
    Castillo, P., Lozano, R., and Dzul, A., “Stabilization of a Mini Rotorcraft with Four Rotors,” IEEE Control Systems Magazine, pp. 45-55, 2005.
    Cen, Z., Hassan, N., Tri, B. S., and Younes, A. Y., “Engineering Implementation on Fault Diagnosis for Quadrotors based on Nonlinear Observer,” 25th Chinese Control and Decision Conference, Guiyang, pp. 2971-2975, 2013.
    Cen, Z., Hassan, N., Tri, B. S., and Younes, A. Y., “Robust Fault Diagnosis for Quadrotor UAVs Using Adaptive Thau Observer,” J. Intell. Robot. Syst., 73, pp. 573-588, 2013.
    Chamseddine, A., Theilliol, D., Zhang, Y. M., Join, C. and Rabbath, C. A., “Active fault-tolerant control system design with trajectory re-planning against actuator faults and saturation: Application to a quadrotor unmanned aerial vehicle,” Int. J. Adapt. Control Signal Process, 2013.
    Chen, C. L., Wu, T. C., and Peng, C. C., “Robust trajectories following control of a 2-link robot manipulator via coordinate transformation for manufacturing applications,” Robotics and Computer-Integrated Manufacturing, 27, pp. 569-580, 2011.
    Freddi, A., Longhi, S., and Monteriù, A., “A Diagnostic Thau Observer for a Class of Unmanned Vehicles,” J. Intell. Robot. Syst., 67, pp. 61-73, 2012.
    Gao, Z., Jiang, B., Zhang, Y., and Sun, F., “Active Fault-Tolerant Control Design for T-S Fuzzy Systems with Application to a Near Space Vehicle,” IEEE International Symposium on Intelligent Control Part of 2010 IEEE Multi-Conference on Systems and Control, Yokohama, Japan, 2010.
    Guo, Y., Zhang, Y., and Jiang, B., “Adaptive Fault Compensation for Aircraft Flight Systems with Actuator Faults,” 25th Chinese Control and Decision Conference, Guiyang, pp. 4921-4926, 2013.
    Li, T., Zhang, Y., and Gordon, B. W., “Passive and active nonlinear fault-tolerant control of a quadrotor unmanned aerial vehicle based on the sliding mode control technique,” J. Systems and Control Engineering, 227(1), pp. 12-23, 2012.
    Liu, F., Huang, J., Yang, S., and Demin, X., “Fault detection for discrete-time systems with randomly occurring nonlinearity and data missing: A quadrotor vehicle example,” J. Franklin Institute, 350, pp. 2474-2493, 2013.
    Sharifi, F., Mirzaei, M., Gordon, B. W., and Zhang, Y., “Fault Tolerant Control of a Quadrotor UAV using Sliding Mode Control,” Conference on Control and Fault Tolerant Systems, Nice, France, 2010.
    Tayebi, A. and McGilvray, S., “Attitude Stabilization of a VTOL Quadrotor Aircraft,” IEEE Transactions on Control Systems Technology, 14(3), pp. 562-571, 2006.
    Thau, F. E., “Observing the state of non-linear dynamic systems,” Int. J. Control, 17(3), pp. 471-479, 1973.
    Zuo, Z., “Trajectory tracking control design with command-filtered compensation for a quadrotor,” IET Control Theory Appl., 4(11), pp. 2343-2355, 2010.

    無法下載圖示 校內:2016-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE