簡易檢索 / 詳目顯示

研究生: 王偉銓
Wang, Wei-Chuan
論文名稱: 麥克納姆輪移動載具之動態建模與速度追蹤控制
Modeling, Identification and Speed Tracking Control of Mobile Robot with Mecanum Wheels
指導教授: 彭兆仲
Peng, Chao-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 135
中文關鍵詞: 麥克納姆輪全向移動載具參數鑑別最小平方法粒子群算法最佳化回授控制線性矩陣不等式
外文關鍵詞: Mecanum Wheel Vehicle, System Identification, Filtering Method, Particle Swarm Optimization, Feedback Control, Linear Matrix Inequality
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Extended Abstract ii 誌謝 xxii 目錄 xxiii 表目錄 xxv 圖目錄 xxvi 第1章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 1 1.3 論文架構 4 第2章 全向載具之物理模型推導 5 2.1. 運動學模型 5 2.2. 動力學模型 8 2.3. 動力學模擬 16 第3章 全向輪系統參數鑑別 18 3.1 最小平方法與直接差分法之回歸模型 18 3.2二階濾波法迴歸模型之建立 20 3.3 粒子群算法 26 3.4 參數鑑別模擬 28 3.4.1直接差分法與濾波法之模擬 28 3.4.2不同輸入電壓之模擬比較 34 3.4.3不同濾波因子之模擬 39 第4章 控制器設計 44 4.1 PI控制器設計 44 4.2 穩定性分析 50 4.3線性矩陣不等式求解PI控制器參數 53 4.4 PI控制器模擬 56 4.4.1 圓形軌跡模擬 57 4.4.2 八字形軌跡模擬 74 第5章 麥克納姆輪移動載具實驗驗證 89 5.1 實驗環境以及實驗裝置 89 5.2 參數鑑別實驗流程及結果 92 第6章 結論與未來研究方向 98 6.1結論 98 6.2未來研究方向 98 附錄A 基於中央差分法的直接差分法及雜訊分析 99 附錄B 數值積分之實現 100 附錄C 模擬影片二維碼 101 參考文獻 102

    [1] Wang, Q., et al. An Automatic Guided Vehicle Control System Based on an ARX Model Identifications and a Hybrid Particle Swarm Parameter Optimization. in 2020 39th Chinese Control Conference (CCC). 2020. IEEE.
    [2] Prabowo, Y., et al. Identification of automatic guided vehicle (agv) based on magnetic guided sensor for industrial material transfer. in IOP Conference Series: Materials Science and Engineering. 2021. IOP Publishing.
    [3] Li, Y., et al., Kinematic modeling of a combined system of multiple mecanum-wheeled robots with velocity compensation. Sensors, 2019. 20(1): p. 75.
    [4] Lin, L.-C. and H.-Y. Shih, Modeling and adaptive control of an omni-mecanum-wheeled robot. 2013.
    [5] Szeremeta, M. and M. Szuster, Neural Tracking Control of a Four-Wheeled Mobile Robot with Mecanum Wheels. Applied Sciences, 2022. 12(11): p. 5322.
    [6] Tsai, C.-C. and H.-L. Wu. Nonsingular terminal sliding control using fuzzy wavelet networks for Mecanum wheeled omni-directional vehicles. in International Conference on Fuzzy Systems. 2010. IEEE.
    [7] Hasan, S.F. and H.M. Alwan, Design of hybrid controller for the trajectory tracking of wheeled mobile robot with mecanum wheels. Journal of Mechanical Engineering Research and Developments, 2020. 43(5): p. 400-414.
    [8] Hasana, S.F. and H.M. Alwan, Modeling and Control of Wheeled Mobile Robot With Four Mecanum Wheels.
    [9] Zeidis, I. and K. Zimmermann, Dynamics of a four‐wheeled mobile robot with Mecanum wheels. 2019, Wiley Online Library. p. e201900173.
    [10] Hendzel, Z. and M. Kołodziej. Parametric Identification of the Mathematical Model of a Mobile Robot with Mecanum Wheels. in Conference on Automation. 2023. Springer.
    [11] Chen, L.-H. and C.-C. Peng, Extended backstepping sliding controller design for chattering attenuation and its application for servo motor control. applied sciences, 2017. 7(3): p. 220.
    [12] Chávez-Olivares, C., et al., Experimental evaluation of parameter identification schemes on an anthropomorphic direct drive robot. International Journal of Advanced Robotic Systems, 2012. 9(5): p. 203.
    [13] Li, Y.-R., C.-C. Peng, and J.-N. Juang, An Integral Method for Parameter Identification of a Nonlinear Robot subject to Quantization Error. 2023.
    [14] Shi, H., et al., Robust Total Least Squares Estimation Method for Uncertain Linear Regression Model. Mathematics, 2023. 11(20): p. 4354.
    [15] Jo, S. and S.W. Kim, Consistent normalized least mean square filtering with noisy data matrix. IEEE Transactions on Signal Processing, 2005. 53(6): p. 2112-2123.
    [16] Peng, C.-C. and C.-Y. Su, Modeling and parameter identification of a cooling fan for online monitoring. IEEE Transactions on Instrumentation and Measurement, 2021. 70: p. 1-14.
    [17] Peng, C.-C. and T.-Y. Chen, A recursive low-pass filtering method for a commercial cooling fan tray parameter online estimation with measurement noise. Measurement, 2022. 205: p. 112193.
    [18] Li, Y.-R. and C.-C. Peng, Encoder position feedback based indirect integral method for motor parameter identification subject to asymmetric friction. International Journal of Non-Linear Mechanics, 2023. 152: p. 104386.
    [19] Peng, C.-C., N.-J. Cheng, and M.-C. Tsai, Application of an Output Filtering Method for an Unstable Wheel-Driven Pendulum System Parameter Identification. Electronics, 2023. 12(22): p. 4569.
    [20] Kennedy, J. and R. Eberhart. Particle swarm optimization. in Proceedings of ICNN'95-international conference on neural networks. 1995. IEEE.
    [21] Carvalho, M. and T.B. Ludermir. Particle swarm optimization of neural network architectures andweights. in 7th International Conference on Hybrid Intelligent Systems (HIS 2007). 2007. IEEE.
    [22] Esmin, A., A. Aoki, and G. Lambert-Torres. Particle swarm optimization for fuzzy membership functions optimization. in IEEE International Conference on Systems, Man and Cybernetics. 2002. IEEE.
    [23] Lu, J., W. Xie, and H. Zhou, Combined fitness function based particle swarm optimization algorithm for system identification. Computers & Industrial Engineering, 2016. 95: p. 122-134.
    [24] Alfi, A. and H. Modares, System identification and control using adaptive particle swarm optimization. Applied Mathematical Modelling, 2011. 35(3): p. 1210-1221.
    [25] Shi, Y. and R. Eberhart. A modified particle swarm optimizer. in 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360). 1998. IEEE.
    [26] Shi, Y. and R.C. Eberhart. Empirical study of particle swarm optimization. in Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406). 1999. IEEE.
    [27] Zhang, L., H. Yu, and S. Hu. A new approach to improve particle swarm optimization. in Genetic and Evolutionary Computation Conference. 2003. Springer.
    [28] Clerc, M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. in Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406). 1999. IEEE.
    [29] Eberhart, R.C. and Y. Shi. Comparing inertia weights and constriction factors in particle swarm optimization. in Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512). 2000. IEEE.
    [30] Wang, C., et al., Trajectory tracking of an omni-directional wheeled mobile robot using a model predictive control strategy. Applied Sciences, 2018. 8(2): p. 231.
    [31] Amudhan, A., et al. Design of controllers for omnidirectional robot based on the ystem identification technique for trajectory tracking. in Journal of Physics: Conference Series. 2019. IOP Publishing.
    [32] Alakshendra, V. and S.S. Chiddarwar, Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties. Nonlinear Dynamics, 2017. 87: p. 2147-2169.

    無法下載圖示 校內:2029-08-24公開
    校外:2029-08-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE