| 研究生: |
陳虹瑤 Chen, Haon-Yao |
|---|---|
| 論文名稱: |
自組裝微奈米聚苯胺結構及聚合組裝程序之現象觀察 Self Organized Polyaniline Nano/Microstructures and Observations of Polymerization-Assemble Processes |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 157 |
| 中文關鍵詞: | 聚苯胺 、苯胺 、過硫酸銨 、質子化 |
| 外文關鍵詞: | polyaniline, aniline, APS, protonation |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要在探討微奈米自組裝聚苯胺的聚合與組裝過程。我們不僅觀察微奈米自組裝聚苯胺的過程,並討論有序結構形成的可能機制原因。
一般聚苯胺生成方法,包括有硬模板與軟模板生成法,也有依據合成法的不同分為單相聚合、界面聚合、自穩定分散聚合與簡易無模板聚合。上述生成法一般會生成球狀、管狀或纖維狀的聚苯胺。
本研究提出一有別於一般聚合法,我們並不添加摻雜酸、界面活性劑或有機溶劑。另外,僅使用純苯胺與極少量的氧化劑過硫酸銨(APS)溶液進行聚合反應。穿隧式電子顯微鏡結果,呈現奈米孔洞的微米管狀聚苯胺。而利用光學顯微鏡,我們可捕捉苯胺聚合反應過程中的現象變化。結合此微觀和巨觀的觀察所得之最終產物及動態過程的結果,我們可推論形成有序結構聚苯胺的可能機理。
我們發現,APS水珠及附近的區域和苯胺相中距APS水珠較遠處,所生成的聚苯胺為兩種不同的聚合組裝方式。在APS水珠及附近的區域,因為APS濃度較高,聚苯胺中的氧化態(imine)較還原態(amine)多。也因聚合過程中生成硫酸,所以在APS濃度高處,聚苯胺被質子化程度高,以延伸的聚苯胺聚合組裝,使產物呈現細長的緊實結構。然而,在苯胺相距APS水珠遠處,因為APS濃度低,聚苯胺中的還原態(amine) 較氧化態(imine)多。而聚合過程中生成的硫酸量少,聚苯胺被質子化程度低,聚苯胺以絨球狀的型態來聚合組裝,使產物呈現顆粒結構。而介在兩區域之間的產物聚苯胺,因為APS濃度梯度影響,質子化程度介於兩區域之間,以些微延伸的聚苯胺聚合組裝而呈現綿延的長條纏繞堆疊結構。
本碩論提出了製備有序組裝結構的新聚合方法。同時透過本實驗系統的最終產物與動態過程觀察,也提供了兩相聚合反應的另一思考面向。
This study focuses on the assembly process and polymerization of the micro-nano self-assembly polyaniline. We not only observe the process of the micro-nano self-assembled polyaniline, and discuss the possible mechanism of the formation of ordered structure reasons.
General polyaniline generation method, including hard template generation method and soft template generation method. Otherwise, according to the different synthesis, we can divide into single-phase polymerization, interfacial polymerization, self-stabilized dispersion polymerization and the simple template-free polymerization. The generation method will generally produce spherical, tubular or fibrous polyaniline .This research presents a different method from the general polymerization, we do not add the doping acid, surfactants or organic solvents. In addition, we use only pure aniline and a small amount of ammonium persulfate (APS) solution for polymerization. On scanning electron microscope, showing tubular PANI nano-micron pores. And on optical microscope, We can capture the process of aniline polymerization phenomenon of change. This combination of micro and macro observations of the final product and the dynamic process of the results, we conclude that the possible formation mechanism of ordered structure of polyaniline.
We found, APS drops and the surrounding area and the area much further away from the APS drops in the aniline phase, the final product, polyaniline, assemble with the different ways. In the area of APS drops and the surrounding, because higher concentration APS, polyaniline in the oxidized state (imine) is more than the reduced state (amine). Also, sulfuric acid is generated by APS during polymerization. So in the high APS concentration area, polyaniline is a high degree of protonation. The polyaniline is stretch polyaniline and the stretch polyaniline assemble to the final product, so the product presents a slender compaction structure. But, in the area much further away from the APS drops in the aniline phase, because lower concentration APS, polyaniline in the reduced state (amine) is more than the oxidized state (imine). Because the amount of sulfuric acid generated during polymerization is few, polyaniline is a low degree of protonation.
Patterns of polyaniline aggregate assembly by coil, so the product presents a particle structure. In the medium between the below two regions, because the final product was affected by APS concentration gradient, the degree of protonation is between the degree of the two regions. The polyaniline is elongated polyaniline and the elongated polyaniline assemble to the final product, so the product presents the structure of Stretching strips of polyaniline which is winding and stacked.
In this thesis, with a new polymerization method, we prepare the product with an ordered assembly of the structure. At the same time, through the final product of observation and the dynamic process of observation in this experimental system, we provide a new direction of the study in two-phase polymerization.
1.M. Lapkowski and E. M. Genies, J. Electroanal. Chem., 279, 157 (1990)
2.D. M. Mohilner, R. N. Adams and W. J. Argersinger, J. Am. Chem. Soc., 84, 3618 (1962)
3.J. Bacon and R. N. Adams, J. Am. Chem. Soc., 90, 6596 (1968).
4.R. A. Cox and E. Buncel, in The Chemistry of Hydrazo, Azo and Azoxy Groups, S. Patel Ed., Wiley, New York, Part 2, P775 (1975).
5.E. M. Genies and M. Lapkowski, J. Electroanal. Chem., 236, 199 (1987).
6.A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu and N. L. D. Somasir, Mol. Cryst. Liq. Cryst., 121, 173 (1985).
7.A. G. MacDiarmid and A. J. Epstein, Faraday Discuss Chem. Soc., 88, 317 (1989)
8.J. P. Travers, J. Chroboczek, J. Devereux, F. Genoud, M. Nechtschein, A. Syed, E. M. Genies, C. Tsintavis, Mol. Cryst. Liq. Cryst., 121, 195 (1985).
9.D. M. Mohilner, R. N. Adams and W. J. Argersinger, J. Am. Chem. Soc., 84, 3618 (1962).
10.S. Li, Y. Cao and Z. Xue, Synth. Met., 20, 141 (1987).
11.A. G. MacDiarmid, J. C. Chiang, W. Huang, B. D. Humphery, N. L. D. Somasiri, Mol. Cryst. Liq. Cryst., 125, 309 (1985).
12.Y. Furukawa, F. Ueda, Y. Hyodo, I. Harada, T. Nakajima and T. Kawahgoe, Macromolecular, 21, 1297 (1988).
13.E. C. Venancio, P. C. Wang, A.G. MacDiarmid, Synthetic Metals, 156, 357 (2006)
14.W. H. Jung, Y. M. Lee, S. P. McCarthy, J. Vinyl. Addit. Techn., 76 (2007)
15.W. H. Jung, Y. M. Lee, N. J. Jo, J. O. Lee, Macromol. Chem. Phys. 209, 1083 (2008)
16.J. Huang and R. B. Kaner, Angew. Chem. Int. Ed., 43, 5817 (2004)
17.J. Huang, S. Virji, B. H. Weiller, and R. B. Kaner, J. AM. CHEM. SOC., 125, 314 (2003)
18.J. Huang and R. B. Kaner, J. AM. CHEM. SOC., 126, 851 (2004)
19.S. H. Lee, D. H. Lee, K. Lee, C. W. Lee, Adv. Funct. Mater., 15, 1495 (2005)
20.N. R. Chiou, L. J. Lee, and A. J. Eostein, Chem. Mater.,19, 3589 (2007)
21.X. Y. Shi, A. L. Briseno, R. J. Sanedrin, and F.M. Zhou, Macromolecules, 36, 4093 (2003)
22.Z. W. Niu, Z. Z.Yang, Z. B. Hu,Y. F. Lu, andC. C.Han, Adv. Funct. Mater., 13, 949 (2003)
23.X. M. Feng, C. J. Mao, G. Yang,W. H. Hou, and Y. J. Zhu, Langmuir, 22, 4384 (2006)
24.C. L. Zhu, S. W. Chou, S. F. He, W. N. Liao, and C. C. Chen, Nanotechnology, 18, 275604 (2007)
25.T. H. Kim, Y. Kim, S. J. Lee, W. S. Han, and J. H. Jung, Chem. Lett., 37, 598 (2008)
26.K. Huang, Y. J. Zhang, Y. Z. Long, J. H. Yuan, D. X. Han, Z. J. Wang, L. Niu, and Z. J. Chen, Chem. Eur. J., 12, 5314 (2006)
27.X. M. Feng, G. Yang, Q. Xu, W. H. Hou, and J. J. Zhu, Macromolec. Rapid Commun., 27, 31 (2006)
28.Z. M. Zhang, Z. X. Wei, and M. X. Wan, Macromolecules, 35, 5937 (2002)
29.X. Wang, N. Liu, and W. J. Zhang, Solid State Phenom., 429, 121 (2007)
30.H. J. Ding, J. Y. Shen, M. X.Wan, and Z. J. Chen, Macromolec. Chem. Phys., 209, 864 (2008)
31.P. Liu and L. Zhang, Crit. Rev. Solid State, 34, 75 (2009)
32.J. W. Cahn, J. Chem. Phys., 42, 1, 93 (1965)
33.K. Binder, J. Chem. Phys., 79, 12, 6387 (1983)
34.R. Saxena and G. T. Caneba, Polym. Eng. Sci., 42, 5, 1019 (2002)
35.董炎明,朱平平,徐世愛,高分子結構與性能,上海,華東理工大學出版社,2010
校內:2020-12-31公開