簡易檢索 / 詳目顯示

研究生: 陳柏佑
Chen, Po-Yu
論文名稱: 人造衛星尋星儀鏡組的設計及優化之探討
The study on the design and optimization of the satellite star tracker lens system
指導教授: 朱淑君
Chu, Shu-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 58
中文關鍵詞: 尋星儀光學系統設計
外文關鍵詞: star tracker, optical system design
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 尋星儀(Star Tracker)是衛星與太空載具之姿態判斷系統的最關鍵的元件。衛星的主要性能規格受到尋星儀性能的限制極大。大至地球同步通訊衛星小至立方衛星,尋星儀均是衛星的標準配備。而尋星儀中的核心零組件之一就是其鏡頭。
    本論文將對尋星儀鏡組優化設計,考慮項目包括場角、成像品質、光般大小等,最終設計了一個小型化、輕量化,同時考量加工成本以及操作性的尋星儀。除可大幅降低未來衛星任務的經費,更是對台灣未來衛星任務的自主性極為重要,有效提升太空領域的研究能量。

    The study on the design and optimization of the satellite star tracker lens system
    Po-Yu Chen
    Advisor: Shu-Chu, Ph.D.
    Department of Physics, National Cheng Kung University
    SUMMARY
    Star trackers are the essential unit equipped on satellites for monitoring posture. The performance specifications of the satellites are greatly limited by the star trackers lens. This paper describes how to use geometric optics aberration as tools, to design satellite star tracker lens. Finally, we design a satellite star tracker lens that is miniaturized, lightweight, and commercially available, which can be properly operated under the On Semiconductor HAS2 CCD chip.

    Key words: star tracker, optical system design

    INTRODUCTION

    In the 21th century, research in outer space has already been a popular field. Most of the studies are carried on varies artificial satellites. Star trackers are the essential unit equipped on satellites for monitoring posture. The performance specifications of the satellites are greatly limited by the star trackers. And, the performance of the star trackers is heavily relying on lens. In this article, we will demonstrate the progress of the lens optimization and design.

    MATERIALS AND METHODS

    In geometric optics, the ideal optical system at any point on the object plane that emits the same beam through the optical system, converges a point on the imaging plane, and the arrangement of the image points on the image plane The arrangement of the source points on the plane is in an equal proportional relationship. For wave optics, the ideal imaging system should perfectly present the wave front of the object plane on the image plane.
    Aberration is the difference between the actual imaging and the ideal of the optical system. The aberration can be described by the ray offset of an ideal imaging point or by the wave front offset of the ideal reference light. Often such an offset is related to the aperture and the angle of view. For example, the imaging positions of the ray incident at different apertures are different, the imaging magnifications of the incident light at different angles of view are different, etc. This paper describes how to use these offsets as tools, to design satellite star tracker lens.

    RESULTS AND DISCUSSION

    The ultimate goal of this thesis is to design a commercially available star tracker, and there are two elements to avoid when discussing commercialization. One is cost, and the other is user convenience. In terms of practicality, if the mirror is not sensitive to the change in curvature in the tolerance analysis, the difference in imaging effect will not be too large, and the cost of the mold can be saved in production. In terms of weight, the density of the K9 glass is 2.21g/cm3, and the weight of the lens part is only 41.9g, which is in line with the assembly requirements of the mirror.

    CONCLUSION

    This paper designs a satellite star tracker lens that is miniaturized and lightweight, while considering processing costs and operability. It can reach a field of view of 15 degrees and the maximum distortion of the whole field is less than 0.5%. The spot size of the whole field is less than 128μm, which can be properly operated under the On Semiconductor HAS2 CCD chip.

    第 1 章 前言 1 第 2 章 光學設計基礎 2 2-1 前言 2 2-2 光學系統特性 2 2-2-1 軸對稱系統的對稱特性 (Symmetry properties of centered system) 2 2-2-2 光線攔截曲線(ray intercept curves) 7 2-3 像差與成像品質評價 8 2-3-1 球差(Spherical aberration) 9 2-3-2 慧差(Coma Aberration) 9 2-3-3 像散(Astigmatism) 10 2-3-4 場曲(Curvature of field) 11 2-3-5 畸變(Distortion) 12 2-3-6 色像差(Chromatic aberration) 12 第 3 章 成像系統設計 13 3-1 設計工具介紹 13 3-1-1 光學設計軟體OSLO 13 3-1-2 OSLO最佳化方式介紹 13 3-2 設計目標 15 3-3 設計與優化過程與階段 17 3-3-1 階段一:模型起始的選擇 17 3-3-2 階段二:基本規格設定 18 3-3-3 階段三:大場角優化 19 3-3-4 階段四:成像品質優化 24 3-3-5 階段五:光斑大小優化 28 3-3-6 階段六:公差分析 32 第 4 章 討論 49 4-1 曲率板模研究 49 4-2 變焦結構 54 4-3 重量與組裝討論 55 第 5 章 結論 57 第 6 章 參考資料 58

    1.許阿娟、朱嘉雯、林佳芬、陳志隆, 光學系統設計進階篇, fourth version, 2002, Ch3
    2.朱淑君, 光學系統設計講義, 2016, Ch6
    3.愛發股份有限公司, (2018/3/20),[Online], http://www.apic.com.tw/OSLO.html
    4.許阿娟、朱嘉雯、林佳芬、陳志隆, 光學系統設計進階篇, fourth version, 2002, Ch7
    5.The BRITE Space Telescope:A Nanosatellite Constellation for High-Precision Photometry of the Brightest Stars, Norman C. Deschamps, C. Cordell Grant, Dan G. Foisy, Robert E. Zee Space Flight Laboratory, University of Toronto Institute for Aerospace Studies
    6.許阿娟、朱嘉雯、林佳芬、陳志隆, 光學系統設計進階篇, fourth version, 2002, Ch8
    7.长春吉祥光电仪器有限公司, (2018/6/15), [Online], http://www.ccjxoptic.com/
    8.三聯科技(2018/6/15), [Online], http://www.sanlien.com/web/homepage.nsf/sanlien-index?openform

    無法下載圖示 校內:2023-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE