簡易檢索 / 詳目顯示

研究生: 游閔盛
You, Min-Sheng
論文名稱: 奈米鑽石複合薄膜之製備與應用
The growth and application of nanodiamond composite films
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 102
中文關鍵詞: 碳化矽複合薄膜奈米鑽石
外文關鍵詞: diamond
相關次數: 點閱:51下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為二大部分,第一部分是使用熱燈絲系統、甲烷/氫氣為反應物以成長奈米鑽石薄膜,藉由調整氣相組成、氣體壓力、基板溫度,可合成各種晶粒大小(8nm~23nm)、品質(SP3/SP2)、成長速率(0.2~1.4um/hr)之奈米鑽石薄膜,其中最佳製程條件為碳源12%,壓力5 Torr 基板溫度600~650℃。

    第二部分的研究是在奈米鑽石之製程條件,於氣相中加入六甲基矽氧烷(HMDSO:Hexamethyldisiloxane)以進一步合成 奈米鑽石/碳化矽 複合薄膜,藉由調整氣相之矽源之比例可合成出各種奈米組成之複合薄膜,硬度介於61Gpa(奈米鑽石)與31Gpa(奈米碳化矽)之間,其中微量的矽加入後有助於提升薄膜之韌性,以及薄膜成核密度。經由TEM及XPS分析推測,奈米鑽石/碳化矽 複合薄膜存在無晶質之SiOx結構。

    Abstract

    This subject is divided into two parts. The first is fabrication of Nano-diamond films via CH4/H2 as gas source in a hot-filament chemical vapor deposition reactor. The growth rate、grain size、film quality are analysis by SEM, XRD, and RAMAN.

    The second is fabrication of nanodiamond/SiC nanocomposite. By carefully controlling the gas contents of HMDSO, various nanocomposite films(61Gpa~31Gpa) were synthesized. And fracture toughness were also enhanced via introducing 0.11%Si source in the atmosphere. TEM、XPS analysis also suggest an amorphous SiOx structure in our nanocomposite films.

    目錄 中文摘要.....................................................................I 英文摘要...........................................................................II 誌謝........................................................................III 目錄.........................................................................IV 表目錄....................................................................VIII 圖目錄......................................................................IX 第一章緒論…………………………………………………………………………………………1 1-1 前言……………………………………………………………………………………………1 1-2奈米鑽石薄膜應用之瓶頸……………………………………………………………………1 1-3碳化矽簡介……………………………………………………………………………………2 1-4研究動機與目的………………………………………………………………………………3 第二章 理論基礎及文獻回顧……………………………………………………………………8 2-1化學氣相沈積法(Chemical Vapor Deposition)……………………………………………8 2-1-1化學氣相沉積法之動力學分析……………………………………………………………8 2-1-2 薄膜成長機制……………………………………………………………………………11 2-1-3 CVD法成長鑽石薄膜………………………………………………………………………12 2-2 CVD法成長奈米鑽石薄膜……………………………………………………………………13 2-3奈米複合薄膜…………………………………………………………………………………17 2-3-1 奈米複合薄膜之理論基礎………………………………………………………………17 2-3-2薄膜機械性質量測-奈米壓痕技術………………………………………………………20 2-3-3 奈米複合薄膜現況與前景………………………………………………………………21 2-4 奈米鑽石複合薄膜………………………………………………………………………26 第三章 實驗參數與研究方法…………………………………………………………………38 3-1 實驗流程 ……………………………………………………………………………………38 3-2 系統設備…………………………………………………………………………………………………39 3-2-1 熱燈絲系統………………………………………………………………………………39 3-2-2 電源供應系統……………………………………………………………………………39 3-2-3 溫度量測系統.......…………………………………………………………………39 3-2-4 真空抽氣系統 …………………………………………………………………………40 3-2-4-1 抽氣系統…………………………………………………40 3-2-4-2 壓力檢測系統……………………………………………40 3-2-4-3 反應氣體輸入系統………………………………………40 3-3 實驗材料…………………………………………………………. .41 3-3-1 實驗基板…………………………………………………. .41 3-3-2 實驗氣體………………………………………………… . 42 3-3-3 實驗藥品…………………………………………………. .42 3-4 實驗操作…………………………………………………………...42 3-5 分析與鑑定………………………………………………………...43 3-5-1 表面型態分析……………………………………………. .43 3-5-2 薄膜微結構分析…………………………………………...44 3-5-3 薄膜組成與鍵結型態分析………………………………45 3-5-4 薄膜微硬度分析…………………………………………45 3-5-5 薄膜附著力分析…………………………………………46 3-5-6 光譜分析…………………………………………………46 3-5-6-1 拉曼光譜………………………………………………46 3-5-6-2 紫外光可見光光譜…………………………………………47 第四章 奈米鑽石薄膜之成長.……………………………………49 4-1 前言………………………………………………………………49 4-2 氣相組成對薄膜組成及特性影響………………………………49 4-2-1 表面形態分析………………………………………………49 4-2-2 Raman光譜分析…………………………………………….50 4-2-3薄膜結構分析……………………………………………….50 4-3 反應壓力對薄膜組成及特性影響……………………………51 4-3-1表面形態分析……………………………………………….51 4-3-2 Raman光譜分析…………………………………………….52 4-3-3薄膜結構分析……………………………………………….52 4-4 基板溫度對薄膜組成及特性影響…………………………..52 4-4-1表面形態分析……………………………………………….52 4-4-2 Raman光譜分析…………………………………………….53 第五章 奈米鑽石/碳化矽 複合薄膜製程探討.…… 62 5-1 前言………………………………………………………………...62 5-2 氣相矽濃度效應…………………………………………………...62 5-2-1 薄膜結構分析……………………………………………...62 5-2-2 Raman光譜分析…………………………………………………………………63 5-2-3 薄膜表面型態分析………………………………………………………………64 5-2-4 薄膜紫外光可見光穿透度分析……………………………………………………64 5-3 改變氣相壓力對 碳化矽/奈米鑽石 複合薄膜製程之影響…………………………65 5-3-1 薄膜結構分析……………………………………………………………………65 5-3-2 薄膜光譜分析……………………………………………………………………66 5-3-3 薄膜表面形態分析………………………………………………………………66 5-3-4 奈米複合薄膜紫外光可見光穿透度分析………………………………………67 5-3-5 奈米複合薄膜毫硬度分析………………………………………………………68 5-3-6 薄膜微結構分析…………………………………………………………………69 5-3-7 薄膜組成及鍵結分析……………………………………………………………70 5-3-8 奈米複合薄膜附著力分析………………………………………………………71 第六章 結論……………………………………………………………………………93 第七章 參考文獻.………………………………………………………………………98 自述與著作 ……………………………………………………………………………102

    第七章 參考文獻

    [1] S.-T. Lee, Z. Lin and X. Jiang, Materials Science and Engineering R, 25, 123 (1999).
    [2] J. C. Angus, Thin Solid Films 216, 126 (1992).
    [3]宋健民,鑽石合成,全華科技圖書,1999年7月.
    [4] Jih-Jen Wu, Shih-Hsien Yeh, Chin-Ta Su, and Franklin Chau-Nan Hong,Appl. Phys. Lett. 68, 3254(1996).
    [5] Jih-Jen Wu and Franklin Chau-Nan Hong, Appl. Phys. Lett. 70,
    186 (1997).
    [6] Jih-Jen Wu and Franklin Chau-Nan Hong, J. Appl. Phys. 81, 3652(1997).
    [7] Jih-Jen Wu and Franklin Chau-Nan Hong, J. Appl. Phys. 81, 3647(1997).
    [8] Jih-Jen Wu and Franklin Chau-Nan Hong, J. Mater. Res. 13, 2498(1998).
    [9] Koji Kobashi, Diamond Films, ELSEVIER(2005).
    [10] H.P. Lorenz, Diamond and Related Materials, 4, 1088 (1995).
    [11] Q. Hua Fan a, A. Fernandes, E. Pereira, J. Gra´cio , Diamond and Related Materials, 8, 1549 (1999).
    [12] X. Jiang and C.-P. Klages, Appl. Phys. Lett, 61,(14), 1629 (1992)
    [13] 陶瓷技術手冊(上),
    [14] R. Stevens, J. Mater. Sci. ,7, 517 (1972).
    [15] 田明波與劉德令編譯,薄膜科學與技術手冊(機械工業出版社,北京,1991年),第1頁.
    [16] J. Carlsson, Thin Solid Films,130, 261 (1985).
    [17] K. F. Jensen and W. Kern, Thin Film Processes II, edited by J. L. Vossen and W. Kern (Academic Press, 1991) 283.
    [18] C. E. Morosanu, Thin Films by Chemical Vapor Deposition (Elsevier, New York, 1990), chapter 5.
    [19] E. Sirtl, I. P. Hunt, and D. H. Sawyer, J. Electrochem. Soc. 121, 919 (1974).
    [20] R. Kern, G. L. Lay, and J. J. Metois, Current Topics in Material Science 3,135 (1979).
    [21] P. K. Bachmann and R. Messier, May 15, 1989 C&EN.
    [22] Hugh O. Pierson, Handbook of carbon, Graphite, Diamond and Fullerenes- Properties, Processing and Applications (Noyes Publicaions, USA, 1993), chapter 3.
    [23] P. E. Pehresson, F. G. Celii, and J. E. Butler, Diamond Films And
    Coatings, edited by R. F. Davis (Noyes, 1993) p.69.
    [24] E. Sirtl, I. P. Hunt, and D. H. Sawyer, J. Electrochem. Soc. 121, 919 (1974).
    [25] H. Liu and D. S. Dandy, Diamond Related Mater. 4, 1173 (1995).
    [26] S. Iijima, Y. Aikawa, and K. Baba, Appl. Phys. Lett. 57, 2646(1990).
    [27] M. Ihara, H. Komiyama, and T. Okubo, Appl. Phys. Lett. 65, 1192 (1994).
    [28] P. A. Denning, D. A. Stevenson, Appl. Phys. Lett. 59,1562 (1992).
    [29] H. Liu and D. S. Dandy, Diamond Related Mater. 4, 1173 (1995).
    [30] X. Jiang, W. J. Zhang, M. paul, and C. P. Klages, Appl. Phys. Lett. 68,1927(1996).
    [31] W. J. Zhang and X. Jiang, Appl. Phys. Lett. 68, 2195 (1996).
    [32] S.A. Catledge et al., J. Appl. Phys. 84, 6469 (1998).
    [33] A. Heiman et al., J. Appl. Phys., 89, 2622 (2001).
    [34] D. M. Bhusari et al., Mater. Lett. 36, 279 (1998).
    [35] D. M. Bhusari et al., J. Mater. Res. 13, 1769 (1998).
    [36] Y. K. Chang et al., Phys. Rev. Lett. 82, 5377 (1999).
    [37] L. C. Chen et al., J. Appl. Phys. 89, 753 (2001).
    [38] V. V. Zhirnov et al., J. Vac. Sci. Technol. B 17, 666 (1999).
    [39] A. Gohl et al., J. Vac. Sci. Technol. B 17, 670 (1999).
    [40] B. Gunther et al., J. Vac. Sci. Technol. B 19, 942 (2001).
    [41] X. Jiang, Journal of applied physics, 88(4), 1788 (2000)
    [42] A. R. Krauss et al., Diamond Related Materials, 10, 1952 (2001).
    [43] Orlando Auciello, J. Phys : Condens. Matter, 16, R539 (2004).
    [44] 劉偉隆、林淳杰、曾春風、陳文照編譯,物理冶金,第三版,頁22-11,(2000)。
    [45] http://www.hysitron.com/
    [46] Anthony C. Fischer-Cripps, Nanoindation,(Springer-Verlag New York 2002), pp.45.
    [47] Jianghong Gong, Ceramics International 28, 767 (2002).
    [48] Guang-Ren Shen, Yu-Ting Cheng, Li-Nuan Tsai, IEEE Transactions On Nanotechnology, 4(5), 539 (2005).
    [49] A. Czyzniewski, Thin Solid Films, 433, 180 (2003).
    [50] R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 4th ed. (J. Wiley & Sons, New York, 1996)
    [51] S. Vep rˇek, S. Reiprich, Thin Solid Films 268, 64 ( 1995).
    [52] S. Veprˇek, J. Vac. Sci. Technol. A 17(5), 2401 (1999).
    [53] S. Veprek, J. Vac. Sci. Technol. A 21(3), 532 (2003).
    [54] S. Veprˇek, Surface and Coatings Technology, 108–109, 138 (1998)
    [55] S. Veprˇek, Surface & Coatings Technology, 200, 3876 (2006).
    [56] S. Veprˇek, Surface and Coatings Technology, 133-134, 152 (2000).
    [57] S. Veprˇek, Materials Science and Engineering, A340, 292 (2003).
    [58] S. Veprˇek, J. Vac. Sci. Technol. B, 23(6), L17-L21 (2005).
    [59] J. Musil , Materials Science and Engineering , A340, 281 (2003).
    [60] J. Musil, Surface and Coatings Technology, 125, 322 (2000).
    [61] J. Musil, J. Vlcˇek, Tilin Solid Films , 343-344, 47 (1993).
    [62] J. Musil, Surface and Coatings Technology , 120–121, 405 (1999).
    [63] Kwang Ho Kim, Thin Solid Films, 420-421, 371 (2002).
    [64] E.Arzt, Acta Mater. 46, 5611 (1998).
    [65] A. A. Voevodin, Tsinghua Science and Tech. 10(6), 665 (2005)
    [66] Holleck H, Surf. Coat. Technol. 76-77, 328 (1995).
    [67] Voevodin A A, Thin Solid Films, 298, 107 (1997).
    [68] Voevodin A A, Thin Solid Films, 401, 187-195 (2001).
    [69] X. jiang, Appl. Phys. Lett. 61(14), 1629 (1992).
    [70] X. jiang, J. Mater. Res. 17 (6), 1241( 2002).
    [71] X. jiang, Applied Physics Letters, 88 (7), 073109(2006).
    [72] Yusheng Zhao, Appl. Phys. Lett. 84 (8), 1356 (2004).
    [73] E. A. Ekimov, Appl. Phys. Lett. 77 (7), 954 (2000).
    [74] L. Schafer, Appl. Phys. Lett.58, 571(1991).
    [75] U. Meier, Appl. Opt. 29, 4993(1990).
    [76] L. L. Connell,J. Appl. Phys. 78, 3622(1995).

    下載圖示 校內:2011-07-31公開
    校外:2011-07-31公開
    QR CODE