簡易檢索 / 詳目顯示

研究生: 盧卡思
Horak, Lukas
論文名稱: 植基於行動裝置之行為辨識及能量消耗監測整合系統
A Mobile-Device-based Integrated System for Human Activity Recognition and Energy Expenditure Monitoring
指導教授: 曾新穆
Tseng, Shin-Mu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 醫學資訊研究所
Institute of Medical Informatics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 98
中文關鍵詞: 行為辨識資料探勘行動感知能量消耗
外文關鍵詞: human activity recognition, data mining, mobile sensing, energy expenditure
相關次數: 點閱:130下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人體動作辨識以及人體能量消耗的監測是目前非常受到矚目的一項研究主題。隨著新式感測器以及穿戴式裝置的發展,將所有資料整合於智慧型手機的想法因此誕生。在本研究中我們設計並實作了一套人體動作辨識系統,我們的目標是發展一套個人化、不間斷、低耗電的系統,整合於智慧型手機,監測個人每天日常能量消耗的模式。經由利用公開的四組資料集作為測試,我們的測試成果顯示,在只利用單一的加速器資料的情形下,我們所發展之系統依然可以獲得同等或更優於先前其他利用多個感測器之研究成果。

    Human Activity Recognition and consequent Human Energy Expenditure monitoring have become one of the emerging researched topics nowadays. With newly available sensors and wearable devices getting significant attention, it brought the idea to develop an integrated system for such purposes with running on a smartphone device. In this thesis, we aim to explore various methods for building a parameterized, continuous and energy efficient system to monitor human daily energy expenditure running on a smartphone. We design and implement a system for Activity Recognition and test it on four public data sets. The experimental results show that the performance of our system is comparable with the previous approaches using multiple sensor data, while our approach uses only single stream of accelerometer data.

    摘要 I Abstract II Acknowledgements III Contents IV List of Tables VII List of Figures IX 1 Introduction 1 1.1 Motivation 2 1.2 Research Aims 3 1.3 Problem Statement 4 1.4 Thesis Organization 4 2 Related Work 6 2.1 Activity Recognition 6 2.2 Smartphone Sensing 8 2.3 Human Energy Expenditure 11 2.3.1 Regression Equations 12 2.4 Validation of Calorimetric Expenditure 16 2.4.1 Black-box Methods 17 2.4.2 Modern Human Activity Recognition devices 19 2.4.3 Direct Methods 19 2.5 HAR and HEE Monitoring System in Context 21 3 System Architecture and Implementation 25 3.1 System Architecture 26 3.1.1 Human Activity Recognition 26 3.1.2 Data Features 30 3.1.3 Human Energy Expenditure 32 3.2 System Implementation 37 3.2.1 Web Service 37 3.2.2 Android App 41 3.2.3 Implementation Obstacles and Solutions 43 3.2.4 Component Workflow 45 4 Experimental Results 50 4.1 Experiment 1 - Activity Recognition 50 4.1.1 Dataset Description 51 4.1.2 Evaluation Methodology 53 4.1.3 Result UCI HAR 54 4.1.4 Result SCUT-NAA 58 4.1.5 Result HASC 60 4.1.6 Result PAMAP 62 4.1.7 Result Opportunity 64 4.1.8 Own Dataset 66 4.1.9 Summary and Discussion 68 4.2 Experiment 2 - Prediction Speed 70 4.2.1 Dataset Description 71 4.2.2 Methodology 71 4.2.3 Results and Discussion 71 4.3 Experiment 3 – Human Energy Expenditure 75 4.3.1 Daily Average MET 76 4.3.2 Human Energy Expenditure in 24 hours 81 4.4 Discussion of Experimental Results 83 5 Conclusion and Future Work 85 5.1 Conclusion 85 5.2 Future Work 87 References 88 VITA 98

    [1] F. Ben Abdesslem, A. Phillips, and T. Henderson, “Less is more: energy-efficient mobile sensing with senseless,” in Proceedings of the 1st ACM workshop on Networking, systems, and applications for mobile handhelds., 2009, pp. 61–62.
    [2] B. E. Ainsworth, W. L. Haskell, S. D. Herrmann, N. Meckes, D. R. Bassett, C. Tudor-Locke, J. L. Greer, J. Vezina, M. C. Whitt-Glover, and A. S. Leon, “2011 Compendium of Physical Activities: a second update of codes and MET values.,” Med. Sci. Sports Exerc., vol. 43, no. 8, pp. 1575–81, Aug. 2011.
    [3] B. E. Ainsworth, W. L. Haskell, M. C. Whitt, M. L. Irwin, a M. Swartz, S. J. Strath, W. L. O’Brien, D. R. Bassett, K. H. Schmitz, P. O. Emplaincourt, D. R. Jacobs, and a S. Leon, “Compendium of physical activities: an update of activity codes and MET intensities.,” Med. Sci. Sports Exerc., vol. 32, no. 9 Suppl, pp. S498–504, Sep. 2000.
    [4] F. Albinali, “Using wearable activity type detection to improve physical activity energy expenditure estimation,” p. 311, 2010.
    [5] G. E. de Almeida Costa, K. da Silva Queiroz-Monici, S. M. Pissini Machado Reis, and A. C. de Oliveira, “Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes,” Food Chem., vol. 94, no. 3, pp. 327–330, Feb. 2006.
    [6] M. Altini, J. Penders, and O. Amft, “Energy Expenditure Estimation using wearable sensors: a new methodology for activity-specific models,” Proc. Conf. Wirel. …, 2012.
    [7] I. Anderson, J. Maitland, S. Sherwood, L. Barkhuus, M. Chalmers, M. Hall, B. Brown, and H. Muller, “Shakra: Tracking and Sharing Daily Activity Levels with Unaugmented Mobile Phones,” Mob. Networks Appl., vol. 12, no. 2–3, pp. 185–199, Aug. 2007.
    [8] L. Atallah, B. Lo, R. King, and G.-Z. Yang, “Sensor Positioning for Activity Recognition Using Wearable Accelerometers,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 4, pp. 320–329, Aug. 2011.
    [9] M. A. Ayu, S. A. Ismail, A. F. A. Matin, and T. Mantoro, “A Comparison Study of Classifier Algorithms for Mobile-phone’s Accelerometer Based Activity Recognition,” Procedia Eng., vol. 41, no. Iris, pp. 224–229, Jan. 2012.
    [10] M. a. Ayu, T. Mantoro, A. F. a. Matin, and S. S. O. Basamh, “Recognizing user activity based on accelerometer data from a mobile phone,” 2011 IEEE Symp. Comput. Informatics, pp. 617–621, Mar. 2011.
    [11] L. Bao and S. Intille, “Activity recognition from user-annotated acceleration data,” Pervasive Comput., pp. 1–17, 2004.
    [12] E. Ben-Elia and D. Ettema, “Changing commuters’ behavior using rewards: A study of rush-hour avoidance,” Transp. Res. Part F Traffic Psychol. Behav., vol. 14, no. 5, pp. 354–368, Sep. 2011.
    [13] C. Berkey, H. Rockett, and A. Field, “Activity, dietary intake, and weight changes in a longitudinal study of preadolescent and adolescent boys and girls,” Pediatrics, vol. 105, no. 4, pp. 1–10, 2000.
    [14] A. G. Bonomi, G. Plasqui, a H. C. Goris, and K. R. Westerterp, “Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer.,” J. Appl. Physiol., vol. 107, no. 3, pp. 655–61, Sep. 2009.
    [15] C. Bouchard and A. Tremblay, “A method to assess energy expenditure in children and adults.,” Am. J. Clin. Nutr., vol. 37, no. 3, pp. 461–467, 1983.
    [16] H. Cao, M. N. Nguyen, C. Phua, S. Krishnaswamy, and X.-L. Li, “An integrated framework for human activity recognition,” Proc. 2012 ACM Conf. Ubiquitous Comput. - UbiComp ’12, p. 621, 2012.
    [17] C. Chang and C. Lin, “LIBSVM: a library for support vector machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1–39, 2011.
    [18] K. Y. Chen and M. Sun, “Improving energy expenditure estimation by using a triaxial accelerometer.,” J. Appl. Physiol., vol. 83, no. 6, pp. 2112–22, Dec. 1997.
    [19] J. Cooley and J. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput, pp. 297–301, 1965.
    [20] S. E. Crouter, K. G. Clowers, D. R. Bassett, E. Scott, and A. Jr, “A novel method for using accelerometer data to predict energy expenditure.,” J. Appl. Physiol., vol. 100, no. 4, pp. 1324–31, Apr. 2006.
    [21] J. Cunningham, “Body composition as a determinant of energy expenditure: a synthetic review and a proposed general prediction equation.,” Am. J. Clin. Nutr., 1991.
    [22] K. L. Dannecker, N. a Sazonova, E. L. Melanson, E. S. Sazonov, and R. C. Browning, “A comparison of energy expenditure estimation of several physical activity monitors.,” Med. Sci. Sports Exerc., vol. 45, no. 11, pp. 2105–12, Nov. 2013.
    [23] J. Dean and S. Ghemawat, “MapReduce : Simplified Data Processing on Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.
    [24] P. Deurenberg, J. a Weststrate, and J. C. Seidell, “Body mass index as a measure of body fatness: age- and sex-specific prediction formulas.,” Br. J. Nutr., vol. 65, no. 2, pp. 105–14, Mar. 1991.
    [25] P. Deurenberg, M. Yap, and W. a van Staveren, “Body mass index and percent body fat: a meta analysis among different ethnic groups.,” Int. J. Obes. Relat. Metab. Disord., vol. 22, no. 12, pp. 1164–71, Dec. 1998.
    [26] V. Dewanto, X. Wu, K. K. Adom, and R. H. Liu, “Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity.,” J. Agric. Food Chem., vol. 50, no. 10, pp. 3010–4, May 2002.
    [27] G. E. Duncan, J. Lester, S. Migotsky, J. Goh, L. Higgins, and G. Borriello, “Accuracy of a novel multi-sensor board for measuring physical activity and energy expenditure.,” Eur. J. Appl. Physiol., vol. 111, no. 9, pp. 2025–32, Sep. 2011.
    [28] M. Ermes, J. Pärkka, J. Mantyjarvi, and I. Korhonen, “Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions.,” IEEE Trans. Inf. Technol. Biomed., vol. 12, no. 1, pp. 20–6, Jan. 2008.
    [29] J. Frank and S. Mannor, “Time series analysis using geometric template matching,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 3, pp. 740–754, 2013.
    [30] R. Fuchs, C. Theis, and M. Lancaster, “A nomogram to predict lean body mass in men.,” Am. J. Clin. Nutr., vol. 31, no. 4, pp. 673–678, 1978.
    [31] L. Gao, H. a. Campbell, O. R. Bidder, and J. Hunter, “A Web-based semantic tagging and activity recognition system for species’ accelerometry data,” Ecol. Inform., vol. 13, pp. 47–56, Jan. 2013.
    [32] a Godfrey, R. Conway, D. Meagher, and G. OLaighin, “Direct measurement of human movement by accelerometry.,” Med. Eng. Phys., vol. 30, no. 10, pp. 1364–86, Dec. 2008.
    [33] M. I. Goran, B. a. Gower, T. R. Nagy, and R. K. Johnson, “Developmental Changes in Energy Expenditure and Physical Activity in Children: Evidence for a Decline in Physical Activity in Girls Before Puberty,” Pediatrics, vol. 101, no. 5, pp. 887–891, May 1998.
    [34] T. Grosse-Puppendahl, E. Berlin, and M. Borazio, “Enhancing Accelerometer-Based Activity Recognition with Capacitive Proximity Sensing,” Ambient Intell., pp. 17–32, 2012.
    [35] M. Hall, E. Frank, and G. Holmes, “The WEKA data mining software: an update,” ACM SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 10–18, 2009.
    [36] J. Harris and F. Benedict, “A biometric study of human basal metabolism,” Proc. Natl. Acad. Sci. U. S. A., vol. 4, no. 12, pp. 370–373, 1918.
    [37] R. Hume, “Prediction of lean body mass from height and weight.,” J. Clin. Pathol., vol. 19, no. 4, pp. 389–91, Jul. 1966.
    [38] A. Iqbal, I. a. Khalil, N. Ateeq, and M. Sayyar Khan, “Nutritional quality of important food legumes,” Food Chem., vol. 97, no. 2, pp. 331–335, Jul. 2006.
    [39] W. P. T. James, “WHO recognition of the global obesity epidemic.,” Int. J. Obes. (Lond)., vol. 32 Suppl 7, pp. S120–6, Dec. 2008.
    [40] N. Kawaguchi, N. Ogawa, and Y. Iwasaki, “Hasc challenge: gathering large scale human activity corpus for the real-world activity understandings,” in Proceedings of the 2nd Augmented Human International Conference, 2011, p. 27.
    [41] N. Kawaguchi and H. Watanabe, “Hasc2012corpus: Large scale human activity corpus and its application,” in 2nd International Workshop on Mobile Sensing, 2012.
    [42] A. M. Khan, Y.-K. Lee, S. Y. Lee, and T.-S. Kim, “A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer.,” IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 5, pp. 1166–72, Sep. 2010.
    [43] M. Khan, S. Ahamed, M. Rahman, and R. Smith, “A Feature Extraction Method for Realtime Human Activity Recognition on Cell Phones,” in Proceedings of 3rd International Symposium on Quality of Life Technology (isQoLT 2011), 2011.
    [44] W. Z. Khan, Y. Xiang, M. Y. Aalsalem, and Q. Arshad, “Mobile Phone Sensing Systems: A Survey,” IEEE Commun. Surv. Tutorials, vol. 15, no. 1, pp. 402–427, 2013.
    [45] G. S. Kolt, R. R. Rosenkranz, T. N. Savage, A. J. Maeder, C. Vandelanotte, M. J. Duncan, C. M. Caperchione, R. Tague, C. Hooker, and W. K. Mummery, “WALK 2.0 - using Web 2.0 applications to promote health-related physical activity: a randomised controlled trial protocol.,” BMC Public Health, vol. 13, p. 436, Jan. 2013.
    [46] H. Kumahara, Y. Schutz, M. Ayabe, M. Yoshioka, Y. Yoshitake, M. Shindo, K. Ishii, and H. Tanaka, “The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry.,” Br. J. Nutr., vol. 91, no. 2, pp. 235–43, Feb. 2004.
    [47] J. Kwapisz, “Cell phone-based biometric identification,” in Fourth IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS), 2010, pp. 1–7.
    [48] J. Kwapisz, G. Weiss, and S. Moore, “Activity recognition using cell phone accelerometers,” ACM SIGKDD Explor. Newsl., vol. 12, no. 2, pp. 74–82, 2011.
    [49] N. Lane, E. Miluzzo, and H. Lu, “A survey of mobile phone sensing,” Commun. Mag. IEEE, vol. 48, no. 9, pp. 140–150, 2010.
    [50] N. Lane, M. Mohammod, M. Lin, X. Yang, H. Lu, S. Ali, A. Doryab, E. Berke, T. Choudhury, and A. Campbell, “BeWell: A Smartphone Application to Monitor, Model and Promote Wellbeing,” Proc. 5th Int. ICST Conf. Pervasive Comput. Technol. Healthc., 2011.
    [51] J. Lester, C. Hartung, L. Pina, R. Libby, G. Borriello, and G. Duncan, “Validated caloric expenditure estimation using a single body-worn sensor,” Proc. 11th Int. Conf. Ubiquitous Comput. - Ubicomp ’09, p. 225, 2009.
    [52] Y. Liang, X. Zhou, Z. Yu, B. Guo, and Y. Yang, “Energy efficient activity recognition based on low resolution accelerometer in smart phones,” in Advances in Grid and Pervasive Computing, 2012, pp. 122–136.
    [53] S. Lichtman and K. Pisarska, “Discrepancy between self-reported and actual caloric intake and exercise in obese subjects,” N. Engl. J. Med., vol. 327, no. 27, pp. 1893–1896, 1992.
    [54] M. Lin, N. Lane, M. Mohammod, and X. Yang, “BeWell+: multi-dimensional wellbeing monitoring with community-guided user feedback and energy optimization,” Proc. …, 2012.
    [55] J. W. Lockhart, G. M. Weiss, J. C. Xue, S. T. Gallagher, A. B. Grosner, and T. T. Pulickal, “Design considerations for the WISDM smart phone-based sensor mining architecture,” Proc. Fifth Int. Work. Knowl. Discov. from Sens. Data - SensorKDD ’11, pp. 25–33, 2011.
    [56] E. MacCurdy, In sight of Leonardo da Vinci: letters from his notebooks. New York, New York, USA: Reynal & Hitchcock, 1938, p. 166.
    [57] T. Maekawa and Y. Kishino, “WristSense: Wrist-worn sensor device with camera for daily activity recognition,” in IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), 2012, no. March, pp. 510–512.
    [58] T. Maekawa and S. Watanabe, “Unsupervised Activity Recognition with User’s Physical Characteristics Data,” 2011 15th Annu. Int. Symp. Wearable Comput., pp. 89–96, Jun. 2011.
    [59] M. Malavolti, A. Pietrobelli, M. Dugoni, M. Poli, E. Romagnoli, P. De Cristofaro, and N. C. Battistini, “A new device for measuring resting energy expenditure (REE) in healthy subjects.,” Nutr. Metab. Cardiovasc. Dis., vol. 17, no. 5, pp. 338–43, Jun. 2007.
    [60] A. Mannini and A. M. Sabatini, “Accelerometry-based classification of human activities using Markov modeling.,” Comput. Intell. Neurosci., vol. 2011, p. 647858, Jan. 2011.
    [61] A. Mannini and A. M. Sabatini, “Machine learning methods for classifying human physical activity from on-body accelerometers.,” Sensors (Basel)., vol. 10, no. 2, pp. 1154–75, Jan. 2010.
    [62] K. Mase, “Activity and location recognition using wearable sensors,” IEEE Pervasive Comput., vol. 1, no. 3, pp. 24–32, Jul. 2002.
    [63] T. Mashita, K. Shimatani, M. Iwata, H. Miyamoto, D. Komaki, T. Hara, K. Kiyokawa, H. Takemura, and S. Nishio, “Human activity recognition for a content search system considering situations of smartphone users,” IEEE Virtual Real., pp. 1–2, Mar. 2012.
    [64] M. J. Mathie, A. C. F. Coster, N. H. Lovell, and B. G. Celler, “Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement,” Physiol. Meas., vol. 25, no. 2, pp. 1–20, Apr. 2004.
    [65] V. L. McArdle, William D and Katch, Frank I and Katch, Essentials of exercise physiology. Lippincott Williams & Wilkins, 2006.
    [66] M. Mifflin, S. S. Jeor, and L. Hill, “A new predictive equation for resting energy expenditure in healthy individuals.,” Am. J. Clin. Nutr., vol. 51, no. 2, pp. 241–247, 1990.
    [67] A. Mueen, E. Keogh, and N. Young, “Logical-shapelets: an expressive primitive for time series classification,” in Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, 2011, pp. 1154–1162.
    [68] M. J. Müller, A. Bosy-Westphal, S. Klaus, G. Kreymann, P. M. Lührmann, M. Neuhäuser-Berthold, R. Noack, K. M. Pirke, P. Platte, O. Selberg, and J. Steiniger, “World Health Organization equations have shortcomings for predicting resting energy expenditure in persons from a modern, affluent population: generation of a new reference standard from a retrospective analysis of a German database of resting energy expe,” Am. J. Clin. Nutr., vol. 80, no. 5, pp. 1379–90, Nov. 2004.
    [69] H. Ocan and J. Kinabo, “Basal Metabolic Rate and Energy Expenditure of Rural Farmers in Magubike Village, Kilosa District, Tanzania,” African J. Food, Agric. Nutr. Dev., vol. 13, no. 4, pp. 8128–8138, 2013.
    [70] C. L. Ogden, M. D. Carroll, M. A. McDowell, and K. M. Flegal, “Obesity among adults in the United States--no statistically significant chance since 2003-2004,” NCHS Data Brief, no. 1, p. 1—8, Nov. 2007.
    [71] O. E. Owen, “Resting metabolic requirements of men and women,” in Mayo Clinic Proceedings, 1988, vol. 63, no. 5, pp. 503–510.
    [72] C. Paniagua, H. Flores, and S. N. Srirama, “Mobile Sensor Data Classification for Human Activity Recognition using MapReduce on Cloud,” Procedia Comput. Sci., vol. 10, no. MobiWIS, pp. 585–592, Jan. 2012.
    [73] C. Park, J.-W. Suh, E.-J. Cha, and H.-D. Bae, “Pedestrian navigation system with fall detection and energy expenditure calculation,” in 2011 IEEE International Instrumentation and Measurement Technology Conference, 2011, vol. 1, pp. 1–4.
    [74] B. Piniewski, C. Codagnone, and D. Osimo, Nudging lifestyles for better health outcomes: crowsourced data and persuasive technologies for behavioural change. Publication Office of the European Union, 2011.
    [75] G. Plasqui and K. Westerterp, “Physical activity assessment with accelerometers: an evaluation against doubly labeled water,” Obesity, vol. 15, no. 10, pp. 2371–2379, 2012.
    [76] E. Ravussin and S. Lillioja, “Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber.,” J. Clin. Invest., vol. 78, no. December, pp. 1568–1578, 1986.
    [77] A. Reiss and D. Stricker, “Introducing a New Benchmarked Dataset for Activity Monitoring,” 2012 16th Int. Symp. Wearable Comput., pp. 108–109, Jun. 2012.
    [78] A. Reiss and D. Stricker, “Creating and benchmarking a new dataset for physical activity monitoring,” in Proceedings of the 5th International Conference on PErvasive Technologies Related to Assistive Environments - PETRA ’12, 2012, p. 1.
    [79] D. Roggen and K. Forster, “OPPORTUNITY: Towards opportunistic activity and context recognition systems,” in World of Wireless, Mobile and Multimedia Networks & Workshops, 2009. WoWMoM 2009. IEEE International Symposium on a, 2009, no. February 2009, pp. 1–6.
    [80] A. Roza and H. Shizgal, “The Harris Benedict equation reevaluated: resting energy requirements and the body cell mass.,” Am. J. Clin. Nutr., no. July, pp. 168–182, 1984.
    [81] M. Rumo, O. Amft, G. Tröster, and U. Mäder, “A stepwise validation of a wearable system for estimating energy expenditure in field-based research.,” Physiol. Meas., vol. 32, no. 12, pp. 1983–2001, Dec. 2011.
    [82] D. Schoeller, “Recent advances from application of doubly labeled water to measurement of human energy expenditure,” J. Nutr., no. 1997, pp. 1765–1768, 1999.
    [83] D. a Schoeller, “Measurement of energy expenditure in free-living humans by using doubly labeled water.,” J. Nutr., vol. 118, no. 11, pp. 1278–89, Nov. 1988.
    [84] D. Schoeller and E. Ravussin, “Energy expenditure by doubly labeled water: validation in humans and proposed calculation,” Am. J. Physiol., vol. 250, no. 5 Pt 2, pp. R823–30, May 1986.
    [85] W. N. Schofield, “Predicting basal metabolic rate, new standards and review of previous work.,” Hum. Nutr. Clin. Nutr., vol. 39, pp. 5–41, 1984.
    [86] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Inf. Process. Manag., vol. 45, no. 4, pp. 427–437, Jul. 2009.
    [87] S. N. Srirama, H. Flores, and C. Paniagua, “Zompopo: Mobile Calendar Prediction Based on Human Activities Recognition Using the Accelerometer and Cloud Services,” 2011 Fifth Int. Conf. Next Gener. Mob. Appl. Serv. Technol., pp. 63–69, Sep. 2011.
    [88] P. Srivastava and W. Wong, “Hierarchical Human Activity Recognition Using GMM,” in AMBIENT 2012, The Second International Conference on Ambient Computing, Applications, Services and Technologies., 2012, no. c, pp. 32–37.
    [89] J. Staudenmayer, D. Pober, S. Crouter, D. Bassett, and P. Freedson, “An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer.,” J. Appl. Physiol., vol. 107, no. 4, pp. 1300–7, Oct. 2009.
    [90] S. J. Strath, L. a Kaminsky, B. E. Ainsworth, U. Ekelund, P. S. Freedson, R. a Gary, C. R. Richardson, D. T. Smith, and A. M. Swartz, “Guide to the assessment of physical activity: Clinical and research applications: a scientific statement from the American Heart Association.,” Circulation, vol. 128, no. 20, pp. 2259–79, Nov. 2013.
    [91] L. Sun, D. Zhang, B. Li, B. Guo, and S. Li, “Activity recognition on an accelerometer embedded mobile phone with varying positions and orientations,” Ubiquitous Intell. Comput., pp. 548–562, 2010.
    [92] P. Trevorrow, “Technology running the world : The Nike+iPod kit and levels of physical activity,” Loisir Société / Soc. Leis., vol. 35, no. 1, pp. 131–154, Mar. 2012.
    [93] C. Tudor-Locke, M. M. Brashear, W. D. Johnson, and P. T. Katzmarzyk, “Accelerometer profiles of physical activity and inactivity in normal weight, overweight, and obese U.S. men and women.,” Int. J. Behav. Nutr. Phys. Act., vol. 7, p. 60, Jan. 2010.
    [94] W. Ugulino, D. Cardador, and K. Vega, “Wearable computing: accelerometers’ data classification of body postures and movements,” Adv. Artif. …, pp. 52–61, 2012.
    [95] W. Ugulino, E. Velloso, R. Milidiú, and H. Fuks, “Human Activity Recognition using On-body Sensing,” in Proceedings of III Symposium of the Brazilian Institute for Web Science Research (WebScience), 2012, vol. 1.
    [96] H. Vathsangam, M. Zhang, A. Tarashansky, A. A. Sawchuk, and G. S. Sukhatme, “Towards Practical Energy Expenditure Estimation With Mobile Phones.”
    [97] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh, “Experimental comparison of representation methods and distance measures for time series data,” Data Min. Knowl. Discov., vol. 26, no. 2, pp. 275–309, Feb. 2012.
    [98] I. . H. Witten and E. Frank, Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, 2005, p. 560.
    [99] M. Wolf, “Thomas Jefferson, Abraham Lincoln, Louis Brandeis and the mystery of the universe,” BUJ Sci. Tech. L., vol. 1, no. May, 1995.
    [100] Y. Xue and L. Jin, “A naturalistic 3D acceleration-based activity dataset & benchmark evaluations,” 2010 IEEE Int. Conf. Syst. Man Cybern., pp. 4081–4085, Oct. 2010.
    [101] Z. Yan and V. Subbaraju, “Energy-Efficient Continuous Activity Recognition on Mobile Phones: An Activity-Adaptive Approach,” in Wearable Computers (ISWC), 2012 16th International Symposium on, 2012, pp. 17–24.
    [102] J. Ye, S. Dobson, and S. McKeever, “Situation identification techniques in pervasive computing: A review,” Pervasive Mob. Comput., vol. 8, no. 1, pp. 36–66, Feb. 2012.
    [103] L. Ye and E. Keogh, “Time series shapelets: a new primitive for data mining.,” in Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, 2009, pp. 947–956.
    [104] P. Zappi, D. Roggen, E. Farella, G. Tröster, and L. Benini, “Network-Level Power-Performance Trade-Off in Wearable Activity Recognition,” ACM Trans. Embed. Comput. Syst., vol. 11, no. 3, pp. 1–30, Sep. 2012.
    [105] S. Zhang, P. McCullagh, C. Nugent, H. Zheng, and M. Baumgarten, “Optimal model selection for posture recognition in home-based healthcare,” Int. J. Mach. Learn. Cybern., vol. 2, no. 1, pp. 1–14, Nov. 2010.
    [106] D. Zhao, X. Xian, M. Terrera, R. Krishnan, D. Miller, D. Bridgeman, K. Tao, L. Zhang, F. Tsow, E. S. Forzani, and N. Tao, “A pocket-sized metabolic analyzer for assessment of resting energy expenditure.,” Clin. Nutr., vol. 33, no. 2, pp. 341–7, Apr. 2014.
    [107] P. Zhou, Y. Zheng, Z. Li, M. Li, and G. Shen, “IODetector: A generic service for indoor outdoor detection,” in Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, 2012, pp. 113–126.
    [108] Q. Zhuo, R. Sun, L. Y. Gou, J. H. Piao, J. M. Liu, Y. Tian, Y. H. Zhang, and X. G. Yang, “Total energy expenditure of 16 Chinese young men measured by the doubly labeled water method.,” Biomed. Environ. Sci., vol. 26, no. 6, pp. 413–20, Jun. 2013.

    下載圖示 校內:2019-09-10公開
    校外:2019-09-10公開
    QR CODE