| 研究生: |
吳牧謙 Wu, Mu-Chian |
|---|---|
| 論文名稱: |
3D直寫式靜電紡絲積層製造技術開發及設備建構 Manufacturing Process Development and Equipment Construction of Three-Dimensional Direct-Write Near-Field Electrospinning Technology |
| 指導教授: |
沈聖智
Shen, Sheng-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 靜電紡絲 、積層製造 、可程式邏輯控制器 、壓電纖維 、立體微結構 |
| 外文關鍵詞: | Piezoelectric fiber, Electrospinning, Additive Manufacturing, 3D Nanoscale Objects, Programmable Logic Controller |
| 相關次數: | 點閱:109 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將積層製造技術(Additive Manufacturing, AM)應用於製備壓電纖維的近場式靜電紡絲技術(Near-Field Electrospinning, NFES),建構 3D 直寫式靜電紡絲積層製造設備,並以纖維之直徑調控作為技術原理,開發創新的金字塔式3D 結構堆疊方法。其中設備建構以可程式邏輯控制器(Programmable Logic Controller, PLC)作為控制核心,透過階梯圖程式、人機智能介面之開發與電路配置建構機電控制系統,控制 X、Y、Z 三軸平台執行連續路徑移動作為纖維收集機構,再搭配高壓電源供應器、注射泵浦及微孔針頭組成ㄧ靜電紡絲製程設備。製程開發的部分選用多分子聚合物聚偏氟乙烯(Polyvinylidene fluoride, PVDF)作為原料調配溶液,設計實驗逐次調整收集距離、電壓、收集速度等製程參數,將纖維收集結果以光學顯微鏡搭配工程量測軟體量測其直徑,分析出收集速度對纖維直徑具有決定性的影響。藉由收集平台路徑設計與纖維直徑的調控,開發金字塔式 3D 結構堆疊方法,並選用導電率良好的銅作為收集端,降低纖維因不穩定性而無法堆疊成 3D 結構的可能性。最後本論文以電子顯微鏡觀察纖維堆疊結果,證實纖維確實可藉由本論文技術堆疊出具有一定高度之3D 金字塔微型結構,未來可望應用於微奈米級 3D 結構之快速原型開發(Rapid Prototyping, RP),拓展壓電式微機電系統(Microelectromechanical Systems, MEMS)的應用層面。
In this paper, we construct a direct-write near-field electrospinning equipment and propose a novel method to fabricate 3D nanoscale pyramid structure base on additive manufacturing (AM) process. For equipment construction, we apply high voltage power supply and injection pump system to produce fibers from polymer solutions and use programmable logic controller (PLC) to control the motion of three-axis linear stage, so the fibers can deposit on the substrate with different pattern. Also, an intelligent user-interface is built to monitor and manipulate the three-axis stage. For process development, we use polyvinylidene fluoride (PVDF) as the solutions. By adjusting different processing parameters we can measure different fiber diameter by the help of optical microscope (OM). Finally, we conclude that motion speed has the most influence on fiber diameter from the experiment results, so we fabricate 3D structures by adjusting the motion speed of each layer during the process and form a pyramid structure. The results show fibers stack on each other easier than stacking fibers layer-by-layer with the same diameter. This novel 3D printing scheme promises different fiber diameter in a same process, willing be applied to the development of 3D nanoscale objects.
[1] G. Taylor, “Electrically Driven Jets,” Proceedings of the Royal Society of London A, vol. 313, no. 1515, pp. 453-475, 1969.
[2] Doshi J., and Reneker D. H., “Electrospinning Process and Applications of Electronspun Fibers,” Journal of Electrostatics, vol. 35, no. 2-3, pp. 151-160, 1995.
[3] B. J. Hansen, Y. Liu, R. Yang, and Z. L. Wang, “Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy,” ACS Nano, vol. 4, no.7, pp. 3647-3652, 2010.
[4] Reneker D. H.,. Yarin A. L, Fong H., and Koombhongse S., “Bending Instability of Electrospinning of Nanofibers”, J. Appl. Phys., vol. 87, pp. 31-45, 2000.
[5] Gilbert, W., “De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure,” 1600.
[6] Boys, C. V. “On the Production, Properties, and Some Suggested Uses of he Finest Threads,” Proceedings of the Physical Society of London, vol. 9, no. 1, pp. 8-17, 1887.
[7] Cooley J. F., “Apparatus for Electrically Dispersing Fluids,” US Patent Specification 692631, 1902.
[8] Morton W. J., “Method of Dispersing Fluids,” US Patent Specification 705691, 1902.
[9] Formhals, A., “Process and Apparatus for Preparing Artificial Threads,” US Patent Specification 1975504, 1934.
[10] Formhals, A., “Production of Artificial Fibers,” US Patent Specification 2077373, 1937.
[11] Formhals, A., “Artificial Fiber Construction,” US Patent Specification, 2109333, 1938.
[12] Formhals, A., “Method and Apparatus for the Production of Fibers,” US Patent Specification 2116942, 1938.
[13] Formhals,A.,“MethodofProducingArtificialFibers,”USPatentSpecification 2158415, 1939.
[14] Formhals, A., “Method and Apparatus for the Production of Artificial Fibers,” US Patent Specification 2158416, 1939.
[15] Formhals, A., “Artificial Thread and Method of Producing Same,” US Patent Specification 2187306, 1940.
[16] Formhals,A.,“ProductionofArtificialFibersfromFiberFormingLiquids,”US Patent Specification 2323025, 1943.
[17] G. Taylor, "Disintegration of water drops in an electric field," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 280, no. 1382. pp. 383-397, 1964.
[18] G. M. H Meesters, P. H. W Vercoulen, J. C. M Marijnissen, and B. Scarlett, “Generation of Micron-Sized Droplets from the Taylor Cone,” J. Aerosol Sci, vol. 23, no.1, pp. 37-49, 1992.
[19] RenekerD.H.andChunI.,“NanometreDiameterFibresofPolymer,Produced by Electrospinning,” Nanotechnology, vol. 7, no. 3, pp. 216-223, 1996.
[20] Nick Tucker, Jonathan J. Stanger, MSc, Mark P. Staiger, Hussam Razzaq, and Kathleen Hofman, “The History of the Science and Technology of Electrospinning from 1600 to 1995,” Journal of Engineered Fibers and Fabrics, Special Issue, vol. 7, pp. 63-73, 2012
[21] D.Numakura,“AdvancedScreenPrintingPracticalApproachesforPrintable& Flexible Electronics,” 2008 3rd International Microsystems, Packaging, Assembly & Circuits Technology Conference, Taipei, pp. 205-208, 2008.
[22] Li D., Ouyang G., McCann J. T., and Xia, Y., “Collecting Electrospun Nanofibers with Patterned Electrodes,” Nano Lett, vol. 5, no. 5, pp. 913-918, 2005.
[23] Theron A., Zussmanl E., and Yarin A.L., “An Introduction to Electrospinning and Nanofibers,” Nanotechnology vol. 12, pp. 384-390, 2001.
[24] Daoheng Sun, Chieh Chang, Sha Li, and Liwei Lin, “Near-Field Elecrtospinning,” Nano Letters, vol. 6, no. 4, pp. 839-842, 2006.
[25] KaufuiV.WongandAldoHernandez,“AReviewofAdditiveManufacturing,” ISRN Mechanical Engineering 2012.
[26] Piner R. D., Zhu J. Xu, F. Hong S., and Mirkin C. A., “Dip-pen Nanolithography,” Science, vol. 283, pp. 661−663, 1999.
[27] Sirringhaus H., Kawase T., Friend R. H., Shimoda T., Inbasekaran M. Wu, and W. Woo E. P., “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science, vol. 290, no. 5499, pp. 2123−2126, 2000.
[28] Gratson G. M., Xu M., and Lewis J. A., “Direct Writing of Three- Dimensional Webs,” Nature, vol. 428, no.6981, pp. 386-398, 2004.
[29] Sun K., Wei T. S., Ahn B. Y., Seo J. Y., Dillon S. J., Lewis J. A., “3D Printing of Interdigitated Li-ion Microbattery Architectures,” Adv. Mater, vol. 25, no.33, pp. 4539-4543, 2013.
[30] Maryam Yousefzadeh, Masoud Latifi, Mohammad Amani-Tehran, Wee-Eong Teo, and Seeram Ramakrishna, “A Note on the 3D Structural Design of Electrospun Nanofibers,” Journal of Engineered Fibers and Fabrics, vol. 7, no. 2, 2012.
[31] GuoqingChang,XuefengZhu,AileKi,WeiweiKan,RoseanneWarren,Ruiguo Zhao, Xiaoliang Wang, Gi Xue, Jianyi Shen, and Liwei Lin, “Formation and Self-Assembly of 3D Nanofibrous Networks Based on Oppositely Charged Jets,” Materials and Design, vol. 97, pp. 126-130, 2016.
[32] Gernot Hochleitner, Tomasz Jungst, Toby D Brown, Kathrin Hahn, Claus Moseke, Franz Jakob, Paul D Dalton and Jurgen Groll, “Additive Manufacturing of Scaffolds With Sub-Micron Filaments via Melt Electrospinning Writing,” Biofabrication, vol. 7, no.3, 2015.
[33] Lee M., and Kim H. Y., “Toward Nanoscale Three-Dimensional Printing: Nanowalls Built of Electrospun Nanofibers,” Langmuir, vol. 30, no. 5, pp. 1210-1214, 2014.
[34] Guoxi Luo, Kwok Siong Teh, Yumeng Liu, Xining Zang, Zhiyu Wen, and Liwei Lin, “Direct-Write, Self-Aligned Electrospinning on Paper for Controllable Fabrication of Three-Dimensional Structures,” ACS Appl. Mater. Interfaces, vol. 7, no. 50, pp. 27765-27770, 2015.
[35] 取自“OMRON Industrial Automation” Available: http://www.omron.com.tw/
[36] E. M. Helgeson, N. K. Grammatikos, M. J. Deitzel and J. N. Wagner, “Theory and Kinematic Measurements of the Mechanics of Stable Electrospun Polymer Jets,” Polymer, vol. 49, no. 12, pp. 2924-2936, 2008.
[37] E. T. Thostenson, C. Li and T. W. Chou, “Nanocomposites in Context,” Compos. Sci. Technol., vol. 65, no. 3, pp. 491-516, 2005.
[38]
M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, “Electrospinning and
Electrically Forced Jets. I. Stability Theory,” Physics of Fluids, vol. 13, no. 8,
pp. 2201–2220, 2001.
[39] M. Hohman, M. Shin, G. Rutledge and M. P. Brennera, “Electrospinning and Electrically Forced Jets. II. Applications,” Physics of Fluids, vol. 13, no. 8, pp. 2221-2236, 2001.
[40] Y. Peng and P. Wu, “A Two Dimensional Infrared Correlation Spectroscopic Study on The Structure Changes of PVDF during The Melting Process,” Polymer, vol. 45, no. 15, pp. 5295–5299, 2004.
校內:2022-07-01公開