| 研究生: |
蕭乃誠 Hsiao, Nai-Cheng |
|---|---|
| 論文名稱: |
數位光學與黃光微影技術應用於製作滾筒模具 Digital Light Processing and Photolithography for Fabricating Roller Molds |
| 指導教授: |
李永春
Lee , Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 滾筒模仁 、數位光學 、曲面光阻噴塗系統 、無光罩曝光技術 、光點陣列式斜掃描曝光技術 、二維任意電路圖形 、無接縫滾筒模仁 |
| 外文關鍵詞: | Seamless Roller Mold, Digital Light Processing, Maskless Exposure Technology, Light Point Array Oblique Scanning Ultraviolet Exposure Technology, Two-dimensional Arbitrary Circuit Patterns |
| 相關次數: | 點閱:55 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一套使用無光罩曝光系統直接於滾筒模仁表面製作二維任意微米結構的製程方式。本研究自行建置一套滾筒式的無光罩曝光系統,透過此系統將塗佈於滾筒模仁表面上的光阻層直接進行無光罩式曝光,後續經由光阻的顯影製程,得到大面積、無接縫與任意完整複雜圖形的二維光阻結構,並依據此光阻結構利用蝕刻的方式,完成滾筒模仁之製作。
本論文使用現有的三項技術: 曲面光阻噴塗系統、數位光學處理技術 (Digital Light Processing, DLP)、光點陣列式斜掃描曝光技術;並自行建置一套滾筒式的無光罩曝光系統,此系統包含了光學引擎系統 (Digital UV Exposure System) 與多軸運動控制系統 (Multi-Axis Motion Control System)。利用曲面光阻噴塗系統於滾筒表面形成均勻的光阻層,接著透過光學引擎系統中的數位微反射鏡面裝置結合數位光學處理技術,可於光學成像鏡組景深範圍內實現無光罩曝光,並利用光點陣列式斜掃描曝光技術達到增加橫向解析度目的,使無光罩曝光可定義更複雜的二維圖形結構。本研究使用滾筒式的無光罩曝光系統,可於滾筒模仁表面製作並完成最小線寬20 μm的光阻層二維任意結構定義,並於後續蝕刻製程中製作最小線寬40 μm深度10 μm之二維任意結構。
This thesis proposes a method for directly fabricating microstructures on the surface of a roller mold using a maskless exposure system. A roller-style maskless ultraviolet (UV) light exposure system is developed for UV patterning a photoresist (PR) coated on the surface of roller mold. After the PR developing process, seamless and complex two-dimensional PR microstructures are obtained. The roller mold fabrication is then completed by direct wet etching on the roller mold surface using the patterned PR structures as the etching mask.
This thesis utilizes three existing technologies: curved photoresist spray coating system, digital light processing (DLP) technology, and light point array oblique scanning UV exposure. A roller-style maskless UV-light exposure system is constructed, it consists of a digital UV exposure system and a multi-axis motion control system. A uniform PR layer is first coated on the roller’s surface. Then, the digital micromirror device (DMD) in DLP enables maskless exposure along with an optical imaging lens system. The projected UV spots by DMD are obliquely scanning across the roller surface to pattern the PR layer in a maskless manner. After the PR developing, a patterned PR layer is formed on the roller’s surface with the smallest linewidth of 20 μm. Finally, a roller mold with the smallest feature size of 40 μm and a depth of 10 μm is obtained and can be used for a continuous roll-to-roll imprinting process.
[1]. S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A step toward high-throughput application of continuous nanoimprinting”, ACS Nano, vol. 3, no. 8, pp. 2304-2310, 2009.
[2]. C.-H. Chuang, S.-W. Tsai, J.-F. Lin, and C.-P. Chen, “Fabrication of multi-functional optical films by using a ultraviolet curing roll-to-roll system,” Jpn. J. Appl. Phys. (2008), vol. 50, no. 6S, p. 06GK01, 2011.
[3]. L. P. Yeo et al., “Investigation of hot roller embossing for microfluidic devices,” J. Micromech. Microeng., vol. 20, no. 1, p. 015017, 2010.
[4]. T.-H. Chou, K.-Y. Cheng, C.-W. Hsieh, and Y. Takaya, “Roll-to-roll fabrication of a low-reflectance transparent conducting oxide film with subwavelength structures,” J. Micromech. Microeng., vol. 22, no. 4, p. 045009, 2012.
[5]. U. Tahir, Y. B. Shim, M. A. Kamran, D.-I. Kim, and M. Y. Jeong, “Nanofabrication techniques: Challenges and future prospects,” J. Nanosci. Nanotechnol., vol. 21, no. 10, pp. 4981–5013, 2021.
[6]. M. D. Fagan, B. H. Kim, and D. Yao, “A novel process for continuous thermal embossing of large-area nanopatterns onto polymer films,” Adv. Polym. Technol., vol. 28, no. 4, pp. 246–256, 2009.
[7]. H. Tan, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom., vol. 16, no. 6, p. 3926, 1998.
[8]. N. Ishizawa, K. Idei, T. Kimura, D. Noda, and T. Hattori, “Resin micromachining by roller hot embossing,” Microsyst. Technol., vol. 14, no. 9–11, pp. 1381–1388, 2008.
[9]. S.-Y. Yang, F.-S. Cheng, S.-W. Xu, P.-H. Huang, and T.-C. Huang, “Fabrication of microlens arrays using UV micro-stamping with soft roller and gas-pressurized platform,” Microelectron. Eng., vol. 85, no. 3, pp. 603–609, 2008.
[10]. L.-T. Jiang, T.-C. Huang, C.-Y. Chang, J.-R. Ciou, S.-Y. Yang, and P.-H. Huang, “Direct fabrication of rigid microstructures on a metallic roller using a dry film resist,” J. Micromech. Microeng., vol. 18, no. 1, p. 015004, 2008.
[11]. “亞德科超精密有限公司-光學膜滾輪加工機、導光板模仁加工機、非球面光學鏡片模仁加工機,” Adtek-precision.com. http://www.adtek-precision.com/product_02.php?id=3&sid=2. (accessed Jul. 17, 2023).
[12]. N. Cates et al., “Roll-to-roll nanoimprint lithography using a seamless cylindrical mold nanopatterned with a high-speed mastering process,” Nanotechnology, vol. 32, no. 15, p. 155301, 2021.
[13]. T. Katoh, N. Nishi, M. Fukagawa, H. Ueno, and S. Sugiyama, “Direct writing for three-dimensional microfabrication using synchrotron radiation etching,” Sens. Actuators A Phys., vol. 89, no. 1–2, pp. 10–15, 2001.
[14]. J. Taniguchi and M. Aratani, “Fabrication of a seamless roll mold by direct writing with an electron beam on a rotating cylindrical substrate,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom., vol. 27, no. 6, pp. 2841–2845, 2009.
[15]. 陳泓瑋,「旋轉步階式曲面黃光微影技術製程應用於製作無縫滾輪模仁與微透鏡陣列光學膜」,國立成功大學航空太空工程系碩士班碩士論文,2010。
[16]. 溫宗倫,「曲面光束筆暨旋轉步階式微影技術應用於無縫滾筒模仁之製作」,國立成功大學機械工程學系碩士班碩士論文,2015。
[17]. 楊善,「高精度數位光學與光纖微透鏡陣列之滾筒模仁製程技術」,國立成功大學機械工程學系碩士班碩士論文,2019。
[18]. 阮黃智,「光學機械系統應用於中空滾筒內表面之紫外光光刻技術」,國立成功大學機械工程學系碩士班碩士論文,2017。
[19]. “DLP7000,” Www.ti.com. https://www.ti.com/product/DLP7000. (accessed Jul. 17, 2023).
[20]. “DLP6500FLQ,” Www.ti.com. https://www.ti.com/product/DLP6500FLQ. (accessed Jul. 17, 2023).
[21]. R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today (Kidlington), vol. 8, no. 2, pp. 26–33, 2005.
[22]. E. J. Hansotte, E. C. Carignan, and W. D. Meisburger, “High speed maskless lithography of printed circuit boards using digital micromirrors,” in Emerging Digital Micromirror Device Based Systems and Applications III, 2011, vol. 7932, p. 793207.
[23]. S. Diez, “The next generation of maskless lithography,” in Emerging Digital Micromirror Device Based Systems and Applications VIII, 2016, vol. 9761, p. 976102.
[24]. 賴世勳,「紫外光之光點陣列斜掃描法實現無光罩微影技術」,國立成功大學機械工程學系碩士班碩士論文,2015。
[25]. 楊聰偉,「光點陣列斜掃描與二維及三維無光罩微影技術」,國立成功大學機械工程學系碩士班碩士論文,2018。
[26]. 邱奕憲,「光點陣列斜掃描曝光的量測與誤差校正」,國立成功大學機械工程學系碩士班碩士論文,2020。
[27]. K. F. Chan, “High-resolution maskless lithography,” J. Micro. Nanolithogr. MEMS MOEMS, vol. 2, no. 4, p. 331, 2003.
[28]. ViALUX Messtechnik + Bildverarbeitung GmbH, “SuperSpeed specification,” ViALUX GmbH. https://www.vialux.de/en/superspeed-specification.html. (accessed Jul. 17, 2023).
[29]. O. Çakır, H. Temel, and M. Kiyak, “Chemical etching of Cu-ETP copper,” J. Mater. Process. Technol., vol. 162–163, pp. 275–279, 2005.
校內:2028-08-21公開