簡易檢索 / 詳目顯示

研究生: 王喬彥
Wang, Chiao-Yen
論文名稱: 以傾斜角濺鍍氧化鋅薄膜提高奈米摩擦起電發電機輸出效能之研究
Enhanced Output Performance of Triboelectric Nanogenerators using Oblique-angle Sputtered ZnO Thin Films
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 121
中文關鍵詞: 氧化鋅傾斜角濺鍍擦電效應摩擦起電奈米發電機
外文關鍵詞: ZnO, Oblique-angle deposition, triboelectric effect, triboelectric nanogenerator
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於近年對綠色能源的重視,擷取外部能源並用來驅動微電子元件的技術受到關注與研究,其中摩擦起電因為其高輸出、製成簡易等優點,以及其對機械能的高轉換效率,使得擦電元件在能源技術中具有競爭力。本研究利用自組裝之傾斜角濺鍍(oblique angle deposition)裝置,製備傾斜結構的氧化鋅薄膜,並將之應用於摩擦起電奈米發電機(triboelectric nanogenerator, TENG)。
    本實驗可分為兩部分,第一部分是透過濺鍍技術,製備傾斜排列的氧化鋅薄膜,並對材料的物理性質進行量測。第二部分是將該結構應用於摩擦起電奈米發電機,並考量到元件的實際應用,將矽基板換成具可撓性的PET基板,對元件的擦電輸出進行量測,與未處理的氧化鋅比較,並對輸出差異的機制,提供系統性的解釋。
    本研究成功透過濺鍍技術,在無其他後續製程與前處理的條件下,完成傾斜氧化鋅的成長。當入射角設為45度時,傾斜角度約為18度,且該傾斜角度不會隨著入射角上升而增加。XRD及TEM均顯示傾斜氧化鋅具有(0002)優選取向,且從繞射圖譜可觀察到(0002)呈現圓弧狀之繞射點分布。而傾斜氧化鋅具有略為較高的功函數。
    以傾斜氧化鋅為材料的TENG,相較於未處理之氧化鋅,在擦電輸出上有明顯的增益現象,其電壓、電流及轉移電荷量呈現3.3、8.6、10.1倍的提升。提升的原因為功函數的增加,使傾斜氧化鋅與PDMS在擦電序列表有更大的距離,因此能誘導更多擦電電荷,因此提高TENG輸出訊號,此為第一個觀察到利用傾斜角提高TENG輸出的研究。

    In our work, oblique angle deposition (OAD) technique was deployed to synthesize inclined ZnO thin film. Obliquely aligned ZnO thin film was successfully grown in one step with tilting angle around 18⁰ under incident angle of 45⁰. The characterizations by XRD and TEM revealed that ZnO grew along (0002) preferred orientation.
    Our results showed that TENG based on inclined ZnO thin film produced output voltage of 40.4 (V), short-circuit current of 0.26 (μA), and transferred charge quantity of 49.9 (nC), which were 3.28, 8.67, 10.12 times higher than that of the untreated ZnO thin film. The factor causing the enhanced output is the increase in work function of inclined ZnO. The increased work function led to a larger distance from PDMS in triboelectric series, thus improving the transferred charge quantity and the corresponding output performance.

    中文摘要 I Extended Abstract...... II 致謝... VIII 表目錄.. XI 圖目錄.. XII 第一章 序論..... 1 1-1前言 1 1-2研究動機..... 4 第二章 理論基礎與文獻回顧 6 2-1氧化鋅材料介紹....... 6 2-2氧化鋅製程技術....... 11 2-3濺鍍技術與原理....... 16 2-4傾斜角濺鍍介紹....... 20 2-4-1傾斜角濺鍍原理..... 21 2-4-2傾斜角濺鍍應用..... 25 2-5擦電材料與應用....... 30 2-5-1擦電材料介紹....... 31 2-5-2擦電元件應用....... 36 第三章 實驗步驟與分析儀器 43 3-1實驗流程..... 43 3-2傾斜角濺鍍系統....... 45 3-3材料分析..... 48 3-3-1 高解析掃描式電子顯微鏡..... 48 3-3-2穿透式電子顯微鏡... 50 3-3-3 X光繞射儀. 52 3-3-4原子力顯微鏡....... 54 3-4元件分析..... 58 3-4-1元件製備... 58 3-4-2元件輸出分析....... 60 第四章 結果與討論....... 62 4-1傾斜氧化鋅薄膜材料分析 62 4-1-1表面形貌分析....... 63 4-1-2表面粗糙度及電性分析 70 4-1-3晶體結構及繞射圖譜分析...... 77 4-1-4微結構及優選取向分析 79 4-2元件及擦電輸出分析.... 81 4-2-1元件擦電輸出分析... 81 4-2-2傾斜結構於擦電性質增益之機制討論..... 96 第五章 結論..... 99 第六章 參考文獻. 100

    [1] J. Mohtasham, "Review Article-Renewable Energies," Energy Procedia, vol. 74, pp. 1289-1297, 2015.
    [2] L. D. Hicks and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, vol. 47, pp. 12727-12731, 1993.
    [3] L. D. Hicks and M. S. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor," Physical Review B, vol. 47, pp. 16631-16634, 1993.
    [4] R. Venkatasubramanian, "Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures," Physical Review B, vol. 61, pp. 3091-3097, 2000.
    [5] R.Venkatasubramanian, T.Colpitts, E.Watko, M.Lamvik, and N.El-Masry, "MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications," Journal of Crystal Growth, vol. 170, pp. 817-821, 1997.
    [6] A. Srivastava, N. Kumar, and S. Khare, "Enhancement in UV emission and band gap by Fe doping in ZnO thin films," Opto-Electronics Review, vol. 22, pp. 68-76, 2014.
    [7] Y. H. Leung, X. Y. Chen, A. M. C. Ng, M. Y. Guo, F. Z. Liu, A. B. Djurišić, et al., "Green emission in ZnO nanostructures—Examination of the roles of oxygen and zinc vacancies," Applied Surface Science, vol. 271, pp. 202-209, 2013.
    [8] A. Baral, M. Khanuja, S. S. Islam, R. Sharma, and B. R. Mehta, "Identification and origin of visible transitions in one dimensional (1D) ZnO nanostructures: Excitation wavelength and morphology dependence study," Journal of Luminescence, vol. 183, pp. 383-390, 2017.
    [9] A. B. Djurisic and Y. H. Leung, "Optical properties of ZnO nanostructures," Small, vol. 2, pp. 944-61, Aug 2006.
    [10] C. H. Burgess, "Review of tailoring ZnO for optoelectronics through atomic layer deposition experimental variables," Materials Science and Technology, vol. 33, pp. 809-821, 2016.
    [11] K. Harun, F. Hussain, A. Purwanto, B. Sahraoui, A. Zawadzka, and A. A. Mohamad, "Sol–gel synthesized ZnO for optoelectronics applications: a characterization review," Materials Research Express, vol. 4, p. 122001, 2017.
    [12] P. Ghosh and A. K. Sharma, "Two-photon induced photoluminescence and lasing in pulsed-laser deposited ZnO nanostructures pumped by continuous wave He-Ne laser," Optical Materials, vol. 66, pp. 651-658, 2017.
    [13] H. Dong, B. Zhou, J. Li, J. Zhan, and L. Zhang, "Ultraviolet lasing behavior in ZnO optical microcavities," Journal of Materiomics, vol. 3, pp. 255-266, 2017.
    [14] Z. Chen, X. Chen, S. Chu, and R. Peng, "Ultraviolet to violet lasing from Cd x Zn 1−x O microdisks produced by chemical vapor deposition," Optical Materials, vol. 72, pp. 459-463, 2017.
    [15] A. B. Djurišić, A. M. C. Ng, and X. Y. Chen, "ZnO nanostructures for optoelectronics: Material properties and device applications," Progress in Quantum Electronics, vol. 34, pp. 191-259, 2010.
    [16] A. Kobayashi, O. F. Sankey, and J. D. Dow, "Deep energy levels of defects in the wurtzite semiconductors AIN, CdS, CdSe, ZnS, and ZnO," Physical Review B, vol. 28, pp. 946-956, 1983.
    [17] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, et al., "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, p. 041301, 2005.
    [18] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Superlattices and Microstructures, vol. 34, pp. 3-32, 2003.
    [19] B. Meyer and D. Marx, "Density-functional study of the structure and stability of ZnO surfaces," Physical Review B, vol. 67, 2003.
    [20] Z. Gao, J. Zhou, Y. Gu, P. Fei, Y. Hao, G. Bao, et al., "Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor," J Appl Phys, vol. 105, p. 113707, Jun 1 2009.
    [21] Z. L. Wang, "Progress in piezotronics and piezo-phototronics," Adv Mater, vol. 24, pp. 4632-46, Sep 4 2012.
    [22] A. F. Kohan, G. Ceder, D. Morgan, and C. G. V. d. Walle, "First-principles study of native point defects in ZnO," PHYSICAL REVIEW B, vol. 61, pp. 15019-15027, 2000.
    [23] F. H. Leiter, H. R. Alves, A. Hofstaetter, D. M. Hofmann, and B. K. Meyer, "The Oxygen Vacancy as the Origin of a Green Emission in Undoped ZnO," phys. stat. sol. (b), vol. 226, pp. R4-R5, 2001.
    [24] W.E.Carlos, E.R.Glaser, and D.C.Look, "Magnetic resonance studies of ZnO," Physica B: Condensed Matter, vol. 308-310, pp. 976-979, 2001.
    [25] F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, "Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO," Phys Rev Lett, vol. 91, p. 205502, Nov 14 2003.
    [26] C. G. V. d. Walle, "Hydrogen as a Cause of Doping in Zinc Oxide," Phys Rev Lett vol. 85, pp. 1012-1015, 2000.
    [27] D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B. K. Meyer, et al., "Hydrogen: a relevant shallow donor in zinc oxide," Phys Rev Lett, vol. 88, p. 045504, Jan 28 2002.
    [28] Z. Zhou, "Effects of hydrogen doping through ion implantation on the electrical conductivity of ZnO," International Journal of Hydrogen Energy, vol. 29, pp. 323-327, 2004.
    [29] JiroTsujino, N. Homma, T. Sugawara, I. Shimono, and Y. Abe, "Preparation of Al-doped ZnO thin films by RF thermal plasma evaporation," Thin Solid Films, vol. 407, pp. 86-91, 2002.
    [30] Z. G. Yu, H. Gong, and P. Wu, "Dopant Sources Choice for Formation of p-Type ZnO:  Phosphorus Compound Sources," Chem. Mater., vol. 17, pp. 852-855, 2005.
    [31] W. Liu, F. Xiu, K. Sun, Y.-H. Xie, K. L. Wang, Y. Wang, et al., "Na-Doped p-Type ZnO Microwires," J. Am. Chem. Soc, vol. 132, pp. 2498-2499, 2010.
    [32] K. Kobayashi, T. Koyama, X. Zhang, Y. Kohono, Y. Tomita, Y. Maeda, et al., "Preparation of p-type ZnO Films by Alternate Deposition of ZnO and Mg3N2 Films," Procedia Engineering, vol. 36, pp. 427-433, 2012.
    [33] M.-P. Lu, M.-Y. Lu, and L.-J. Chen, "p-Type ZnO nanowires: From synthesis to nanoenergy," Nano Energy, vol. 1, pp. 247-258, 2012.
    [34] J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, "p-Type ZnO materials: Theory, growth, properties and devices," Progress in Materials Science, vol. 58, pp. 874-985, 2013.
    [35] B.-S. Li, Z.-Y. Xiao, J.-G. Ma, and Y.-C. Liu, "The p-type ZnO thin films obtained by a reversed substitution doping method of thermal oxidation of Zn3N2 precursors," Chinese Physics B, vol. 26, p. 117101, 2017.
    [36] X. Tan, Q. Li, and Y. Zhu, "First-principles study of p-type ZnO by S–Na co-doping," Journal of Semiconductors, vol. 38, p. 083001, 2017.
    [37] X. Y. Kong and Z. L. Wang, "Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanosprings, and nanospirals," Applied Physics Letters, vol. 84, pp. 975-977, 2004.
    [38] T. Song, J. W. Choung, J.-G. Park, W. I. Park, J. A. Rogers, and U. Paik, "Surface Polarity and Shape-Controlled Synthesis of ZnO Nanostructures on GaN Thin Films Based on Catalyst-Free Metalorganic Vapor Phase Epitaxy," Advanced Materials, vol. 20, pp. 4464-4469, 2008.
    [39] J. J. Uhlrich, D. C. Olson, J. W. P. Hsu, and T. F. Kuech, "Surface chemistry and surface electronic properties of ZnO single crystals and nanorods," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 27, pp. 328-335, 2009.
    [40] K.-L. Ching, G. Li, Y.-L. Ho, and H.-S. Kwok, "The role of polarity and surface energy in the growth mechanism of ZnO from nanorods to nanotubes," CrystEngComm, vol. 18, pp. 779-786, 2016.
    [41] D. Mora-Fonz, T. Lazauskas, M. R. Farrow, C. R. A. Catlow, S. M. Woodley, and A. A. Sokol, "Why Are Polar Surfaces of ZnO Stable?," Chemistry of Materials, vol. 29, pp. 5306-5320, 2017.
    [42] T. Su, "Origin of surface potential in undoped zinc oxide films revealed by advanced scanning probe microscopy techniques," RSC Advances, vol. 7, pp. 42393-42397, 2017.
    [43] J. Chang and E. R. Waclawik, "Facet-controlled self-assembly of ZnO nanocrystals by non-hydrolytic aminolysis and their photodegradation activities," CrystEngComm, vol. 14, pp. 4041-4048, 2012.
    [44] R. Boppella, K. Anjaneyulu, P. Basak, and S. V. Manorama, "Facile Synthesis of Face Oriented ZnO Crystals: Tunable Polar Facets and Shape Induced Enhanced Photocatalytic Performance," The Journal of Physical Chemistry C, vol. 117, pp. 4597-4605, 2013.
    [45] M. Huang, S. Weng, B. Wang, J. Hu, X. Fu, and P. Liu, "Various Facet Tunable ZnO Crystals by a Scalable Solvothermal Synthesis and Their Facet-Dependent Photocatalytic Activities," The Journal of Physical Chemistry C, vol. 118, pp. 25434-25440, 2014.
    [46] R. B. Kale, "Excitation wavelength dependent photoluminescence intensity of six faceted prismatic ZnO microrods," Optik - International Journal for Light and Electron Optics, vol. 125, pp. 6270-6273, 2014.
    [47] T. Shinagawa, K. Shibata, O. Shimomura, M. Chigane, R. Nomura, and M. Izaki, "Solution-processed high-haze ZnO pyramidal textures directly grown on a TCO substrate and the light-trapping effect in Cu2O solar cells," Journal of Materials Chemistry C, vol. 2, p. 2908, 2014.
    [48] E. Debroye, J. Van Loon, H. Yuan, K. P. Janssen, Z. Lou, S. Kim, et al., "Facet-Dependent Photoreduction on Single ZnO Crystals," J Phys Chem Lett, vol. 8, pp. 340-346, Jan 19 2017.
    [49] Z. Chen, X. X. Li, G. Du, N. Chen, and A. Y. M. Suen, "A sol–gel method for preparing ZnO quantum dots with strong blue emission," Journal of Luminescence, vol. 131, pp. 2072-2077, 2011.
    [50] S. H. Hsu, Y. Y. Lin, S. Huang, K. W. Lem, D. H. Nguyen, and D. S. Lee, "Synthesis of water-dispersible zinc oxide quantum dots with antibacterial activity and low cytotoxicity for cell labeling," Nanotechnology, vol. 24, p. 475102, Nov 29 2013.
    [51] A. Schejn, M. Fregnaux, J. M. Commenge, L. Balan, L. Falk, and R. Schneider, "Size-controlled synthesis of ZnO quantum dots in microreactors," Nanotechnology, vol. 25, p. 145606, Apr 11 2014.
    [52] L. Mädler, W. J. Stark, and S. E. Pratsinis, "Rapid synthesis of stable ZnO quantum dots," Journal of Applied Physics, vol. 92, pp. 6537-6540, 2002.
    [53] S. Mahamuni, K. Borgohain, B. S. Bendre, V. J. Leppert, and S. H. Risbud, "Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots," Journal of Applied Physics, vol. 85, pp. 2861-2865, 1999.
    [54] H. Zhou, H. Alves, D. M. Hofmann, W. Kriegseis, B. K. Meyer, G. Kaczmarczyk, et al., "Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure," Applied Physics Letters, vol. 80, pp. 210-212, 2002.
    [55] K. A. Alim, V. A. Fonoberov, and A. A. Balandin, "Origin of the optical phonon frequency shifts in ZnO quantum dots," Applied Physics Letters, vol. 86, p. 053103, 2005.
    [56] Y.-S. Fu, X.-W. Du, S. A. Kulinich, J.-S. Qiu, W.-J. Qin, R. Li, et al., "Stable Aqueous Dispersion of ZnO Quantum Dots with Strong Blue Emission via Simple Solution Route," J. Am. Chem. Soc, vol. 129, pp. 16029-16033, 2007.
    [57] D. Bera, L. Qian, S. Sabui, S. Santra, and P. H. Holloway, "Photoluminescence of ZnO quantum dots produced by a sol–gel process," Optical Materials, vol. 30, pp. 1233-1239, 2008.
    [58] Z. Jia and R. D. K. Misra, "Tunable ZnO quantum dots for bioimaging: synthesis and photoluminescence," Materials Technology, vol. 28, pp. 221-227, 2013.
    [59] V. A. Fonoberov and A. A. Balandin, "ZnO Quantum Dots: Physical Properties and Optoelectronic Applications," Journal of Nanoelectronics and Optoelectronics, vol. 1, pp. 19-38, 2006.
    [60] A. Valizadeh, H. Mikaeili, M. Samiei, S. M. Farkhani, N. Zarghami, M. kouhi, et al., "Quantum dots: synthesis, bioapplications, and toxicity," Nanoscale Res Lett, vol. 7, 2012.
    [61] M. A. Mahjoub, G. Monier, C. Robert-Goumet, F. Réveret, M. Echabaane, D. Chaudanson, et al., "Synthesis and Study of Stable and Size-Controlled ZnO–SiO2 Quantum Dots: Application as a Humidity Sensor," The Journal of Physical Chemistry C, vol. 120, pp. 11652-11662, 2016.
    [62] S. Daumann, D. Andrzejewski, M. Di Marcantonio, U. Hagemann, S. Wepfer, F. Vollkommer, et al., "Water-free synthesis of ZnO quantum dots for application as an electron injection layer in light-emitting electrochemical cells," Journal of Materials Chemistry C, vol. 5, pp. 2344-2351, 2017.
    [63] M. M. Rahma, Nanomaterials, 2011.
    [64] N. Kiomarsipour and R. Shoja Razavi, "Characterization and optical property of ZnO nano-, submicro- and microrods synthesized by hydrothermal method on a large-scale," Superlattices and Microstructures, vol. 52, pp. 704-710, 2012.
    [65] A. Moulahi, F. Sediri, and N. Gharbi, "Hydrothermal synthesis of nanostructured zinc oxide and study of their optical properties," Materials Research Bulletin, vol. 47, pp. 667-671, 2012.
    [66] Y. Zhang, M. K. Ram, E. K. Stefanakos, and D. Y. Goswami, "Synthesis, Characterization, and Applications of ZnO Nanowires," Journal of Nanomaterials, vol. 2012, pp. 1-22, 2012.
    [67] C. P. Burke-Govey and N. O. V. Plank, "Review of hydrothermal ZnO nanowires: Toward FET applications," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 31, p. 06F101, 2013.
    [68] A. Moulahi and F. Sediri, "Pencil-like zinc oxide micro/nano-scale structures: Hydrothermal synthesis, optical and photocatalytic properties," Materials Research Bulletin, vol. 48, pp. 3723-3728, 2013.
    [69] Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, Y. Lu, et al., "Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique," J. Phys. Chem. B, vol. 110, pp. 20263-20267, 2006.
    [70] S. Baruah and J. Dutta, "Hydrothermal growth of ZnO nanostructures," Sci Technol Adv Mater, vol. 10, p. 013001, Feb 2009.
    [71] R. Shi, P. Yang, X. Dong, Q. Ma, and A. Zhang, "Growth of flower-like ZnO on ZnO nanorod arrays created on zinc substrate through low-temperature hydrothermal synthesis," Applied Surface Science, vol. 264, pp. 162-170, 2013.
    [72] A. Kolodziejczak-Radzimska and T. Jesionowski, "Zinc Oxide-From Synthesis to Application: A Review," Materials (Basel), vol. 7, pp. 2833-2881, Apr 9 2014.
    [73] N. Bi, L. Zhang, Q. Zheng, F. Zhuge, J. Li, X. P. A. Gao, et al., "Control of ZnO nanowire growth and optical properties in a vapor deposition process," Journal of Materials Science & Technology, vol. 33, pp. 850-855, 2017.
    [74] K. Yadav, B. R. Mehta, S. Bhattacharya, and J. P. Singh, "A fast and effective approach for reversible wetting-dewetting transitions on ZnO nanowires," Sci Rep, vol. 6, p. 35073, Oct 7 2016.
    [75] Y. Zhao, C. Li, M. Chen, X. Yu, Y. Chang, A. Chen, et al., "Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition," Physics Letters A, vol. 380, pp. 3993-3997, 2016.
    [76] B. H. Kim and J. W. Kwon, "Metal catalyst for low-temperature growth of controlled zinc oxide nanowires on arbitrary substrates," Sci Rep, vol. 4, p. 4379, Mar 14 2014.
    [77] S. Ma and A. H. Kitai, "ZnO nanowire growth by chemical vapor deposition with spatially controlled density on Zn2GeO4:Mn polycrystalline substrates," Materials Research Express, vol. 4, p. 065012, 2017.
    [78] P.-C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A. Chiou, J. Hong, et al., "ZnO Nanowires Synthesized by Vapor Trapping CVD Method," Chem. Mater., vol. 16, pp. 5133-5137, 2004.
    [79] R. Yu, W. Wu, Y. Ding, and Z. L. Wang, "GaN Nanobelt-Based Strain-Gated Piezotronic Logic Devices and Computation," ACS Nano, vol. 7, pp. 6403-6409, 2013.
    [80] J. E. Greene, J. E. Sundgren, L. Hultman, I. Petrov, and D. B. Bergstrom, "Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering," Applied Physics Letters, vol. 67, pp. 2928-2930, 1995.
    [81] G. P. Daniel, V. B. Justinvictor, P. B. Nair, K. Joy, P. Koshy, and P. V. Thomas, "Effect of annealing temperature on the structural and optical properties of ZnO thin films prepared by RF magnetron sputtering," Physica B: Condensed Matter, vol. 405, pp. 1782-1786, 2010.
    [82] C.-L. Tien, K.-C. Yu, T.-Y. Tsai, and M.-C. Liu, "Effect of RF power on the optical, electrical, mechanical and structural properties of sputtering Ga-doped ZnO thin films," Applied Surface Science, vol. 354, pp. 79-84, 2015.
    [83] S. Bensmaine and B. Benyoucef, "Effect of the Temperature on ZnO Thin Films Deposited by r.f. Magnetron," Physics Procedia, vol. 55, pp. 144-149, 2014.
    [84] K. Viswanathan, T. S. Shyju, D. Ramachandran, and G. Pradhaban, "Electric properties of ZnO thin films by RF Magnetron sputtering technique," Materials Today: Proceedings, vol. 3, pp. 1548-1552, 2016.
    [85] J. Husna, M. M. Aliyu, M. A. Islam, P. Chelvanathan, N. R. Hamzah, M. S. Hossain, et al., "Influence of Annealing Temperature on the Properties of ZnO Thin Films Grown by Sputtering," Energy Procedia, vol. 25, pp. 55-61, 2012.
    [86] M. Clement, E. Iborra, J. Sangrador, A. Sanz-Hervás, L. Vergara, and M. Aguilar, "Influence of sputtering mechanisms on the preferred orientation of aluminum nitride thin films," Journal of Applied Physics, vol. 94, pp. 1495-1500, 2003.
    [87] S. Swann, "Magnetron sputtering," Physics in Technology, vol. 19, pp. 67-75, 1988.
    [88] R. S. Gonçalves, P. Barrozo, and F. Cunha, "Optical and structural properties of ZnO thin films grown by magnetron sputtering: Effect of the radio frequency power," Thin Solid Films, vol. 616, pp. 265-269, 2016.
    [89] S. Sharma, S. Vyas, C. Periasamy, and P. Chakrabarti, "Structural and optical characterization of ZnO thin films for optoelectronic device applications by RF sputtering technique," Superlattices and Microstructures, vol. 75, pp. 378-389, 2014.
    [90] A. Ismail and M. J. Abdullah, "The structural and optical properties of ZnO thin films prepared at different RF sputtering power," Journal of King Saud University - Science, vol. 25, pp. 209-215, 2013.
    [91] B.-Y. Oh, W.-K. Lee, Y.-H. Kim, and D.-S. Seo, "Zinc oxide nanolevel surface transformation for liquid crystal orientation by ion bombardment," Journal of Applied Physics, vol. 105, p. 054506, 2009.
    [92] H. CZTERNASTEK, "ZnO thin films prepared by high pressure magnetron sputtering," Opto-Electronics Review, vol. 12, pp. 49-52, 2004.
    [93] W. Gao and Z. Li, "ZnO thin films produced by magnetron sputtering," Ceramics International, vol. 30, pp. 1155-1159, 2004.
    [94] S. H. Seo and H. C. Kang, "Growth Behavior of Ga-Doped ZnO Thin Films Deposited on Au/SiN/Si(001) Substrates by Radio Frequency Magnetron Sputtering," Japanese Journal of Applied Physics, vol. 52, p. 11NJ13, 2013.
    [95] F. Fenske, B. Selle, and M. Birkholz, "Preferred Orientation and Anisotropic Growth in Polycrystalline ZnO:Al Films Prepared by Magnetron Sputtering," Japanese Journal of Applied Physics, vol. 44, pp. L662-L664, 2005.
    [96] K. Wasa, "Handbook of Sputter Deposition Technology," pp. 41-75, 2012.
    [97] T. Schuelke, T. Witke, H.-J. Scheibe, P. Siemroth, B. Schultrich, O. Zimmer, et al., "Comparison of DC and AC arc thin film deposition techniques," Surface and Coatings Technology, vol. 120-121, pp. 226-232, 1999.
    [98] I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, "Microstructural evolution during film growth," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 21, pp. S117-S128, 2003.
    [99] C. Ratsch and J. A. Venables, "Nucleation theory and the early stages of thin film growth," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 21, pp. S96-S109, 2003.
    [100] T. G. Knorr and R. W. Hoffman, "Dependence of Geometric Magnetic Anisotropy in Thin Iron Films," Physical Review, vol. 113, pp. 1039-1046, 1959.
    [101] M. S. Cohen, E. E. Huber, G. P. Weiss, and D. O. Smith, "Investigations into the Origin of Anisotropy in Oblique-Incidence Films," Journal of Applied Physics, vol. 31, pp. S291-S292, 1960.
    [102] D. O. Smith, M. S. Cohen, and G. P. Weiss, "Oblique‐Incidence Anisotropy in Evaporated Permalloy Films," Journal of Applied Physics, vol. 31, pp. 1755-1762, 1960.
    [103] L. Chen, T. M. Lu, and G. C. Wang, "Incident flux angle induced crystal texture transformation in nanostructured molybdenum films," Journal of Applied Physics, vol. 112, p. 024303, 2012.
    [104] A.G.Dirks and H.J.Leamy, "Columnar microstructure in vapor-deposited thin films," Thin Solid Films, vol. 47, pp. 219-233, 1977.
    [105] H. Chu, S. Song, C. Li, and D. Gibson, "Surface Enhanced Raman Scattering Substrates Made by Oblique Angle Deposition: Methods and Applications," Coatings, vol. 7, p. 26, 2017.
    [106] L. Abelmann and C. Lodder, "Oblique evaporation and surface diffusion," Thin Solid Films, vol. 305, pp. 1-21, 1997.
    [107] S. Lichter and J. Chen, "Model for columnar microstructure of thin solid films," Phys Rev Lett, vol. 56, pp. 1396-1399, Mar 31 1986.
    [108] S.Müller-Pfeiffer, H. v. Kranenburg, and J.C.Lodder, "A two-dimensional Monte Carlo model for thin film growth by oblique evaporation: simulation of two-component systems for the example of Co-Cr," Thin Solid Films, vol. 213, pp. 145-153, 1992.
    [109] J. M. Nieuwenhuizen and H. B. Haanstra, "Microfractography of thin films," Philips technical review, vol. 27, pp. 87-91, 1966.
    [110] I. Hodgkinson, Q. h. Wu, and J. Hazel, "Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide," Applied Optics, vol. 17, pp. 2653-2659, 1998.
    [111] R.N.Tait, T.Smy, and M.J.Brett, "Modelling and characterization of columnar growth in evaporated films," Thin Solid Films, vol. 226, pp. 196-201, 1993.
    [112] N. J. Ku, J. H. Huang, C. H. Wang, H. C. Fang, and C. P. Liu, "Crystal face-dependent nanopiezotronics of an obliquely aligned InN nanorod array," Nano Lett, vol. 12, pp. 562-8, Feb 8 2012.
    [113] J.-H. Huang, C.-Y. Chen, Y.-F. Lai, Y.-I. Shih, Y.-C. Lin, J.-H. He, et al., "Large-Area Oblique-Aligned ZnO Nanowires through a Continuously Bent Columnar Buffer: Growth, Microstructure, and Antireflection," Crystal Growth & Design, vol. 10, pp. 3297-3301, 2010.
    [114] C. K. Hwangbo, Y. J. Park, K. M. A. Sobahan, H. J. Nam, and J. J. Kim, "Optical and Structural Properties of ZnO Thin Films Fabricated by Using Oblique Angle Deposition," Journal of the Korean Physical Society, vol. 57, pp. 1657-1660, 2010.
    [115] T.-C. Li, C.-F. Han, T.-H. Kuan, and J.-F. Lin, "Effects of sputtering-deposition inclination angle on the IGZO film microstructures, optical properties and photoluminescence," Optical Materials Express, vol. 6, p. 343, 2016.
    [116] A. Barranco, A. Borras, A. R. Gonzalez-Elipe, and A. Palmero, "Perspectives on oblique angle deposition of thin films: From fundamentals to devices," Progress in Materials Science, vol. 76, pp. 59-153, 2016.
    [117] Y. Motemani, C. Khare, A. Savan, M. Hans, A. Paulsen, J. Frenzel, et al., "Nanostructured Ti-Ta thin films synthesized by combinatorial glancing angle sputter deposition," Nanotechnology, vol. 27, p. 495604, Dec 9 2016.
    [118] N. J. Ku, G. Liu, C. H. Wang, K. Gupta, W. S. Liao, D. Ban, et al., "Optimal geometrical design of inertial vibration DC piezoelectric nanogenerators based on obliquely aligned InN nanowire arrays," Nanoscale, vol. 9, pp. 14039-14046, Sep 28 2017.
    [119] Z. Huang, K. D. Harris, and M. J. Brett, "Morphology Control of Nanotube Arrays," Advanced Materials, vol. 21, pp. 2983-2987, 2009.
    [120] R. Messier, V. C. Venugopal, and P. D. Sunal, "Origin and evolution of sculptured thin films," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 18, pp. 1538-1545, 2000.
    [121] Y. He and Y. Zhao, "Mg Nanostructures Tailored by Glancing Angle Deposition," Crystal Growth & Design, vol. 10, pp. 440-448, 2010.
    [122] K. D. Harris, D. Vick, T. Smy, and M. J. Brett, "Column angle variations in porous chevron thin films," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 20, p. 2062, 2002.
    [123] J. Wang, H. Huang, S. V. Kesapragada, and D. Gall, "Growth of Y-Shaped Nanorods through Physical Vapor Deposition," Nano Lett, vol. 5, pp. 2505-2508, 2005.
    [124] M. S. Cohen, D. O. Smith, and G. P. Weiss, "Erratum: Oblique‐Incidence Anisotropy in Evaporated Films," Journal of Applied Physics, vol. 32, pp. 1405-1405, 1961.
    [125] Y.-J. Jen and C.-F. Lin, "Anisotropic optical thin films finely sculptured by substrate sweep technology," Optics Express, vol. 16, pp. 5372-5377, 2008.
    [126] J.-X. Fu, A. Collins, and Y.-P. Zhao, "Optical Properties and Biosensor Application of Ultrathin Silver Films Prepared by Oblique Angle Deposition," J. Phys. Chem. C, vol. 112, pp. 16784-16791, 2008.
    [127] S. R. Kennedy and M. J. Brett, "Advanced techniques for the fabrication of square spiral photonic crystals by glancing angle deposition," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 22, p. 1184, 2004.
    [128] K. Saxena, D. S. Mehta, R. Srivastava, and M. N. Kamalasanan, "Effect of oblique angle deposition of α-naphthylphenylbiphenyl diamine on the performance of organic light-emitting diodes," Journal of Physics D: Applied Physics, vol. 41, p. 015102, 2008.
    [129] M. A. Summers and M. J. Brett, "Optimization of periodic column growth in glancing angle deposition for photonic crystal fabrication," Nanotechnology, vol. 19, p. 415203, Oct 15 2008.
    [130] S. V. Kesapragada, P. Victor, O. Nalamasu, and D. Gall, "Nanospring Pressure Sensors Grown by Glancing Angle Deposition," Nano Lett, vol. 6, pp. 854-857, 2006.
    [131] C.-Y. Chen, J.-H. Huang, J. Song, Y. Zhou, L. Lin, P.-C. Huang, et al., "Anisotropic outputs of a nanogenerator from oblique-aligned ZnO nanowire arrays," ACS Nano, vol. 5, pp. 6707-6713, 2011.
    [132] A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, "Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting," Advanced Functional Materials, vol. 19, pp. 1849-1856, 2009.
    [133] J. P. Singh, F. Tang, T. Karabacak, T. M. Lu, and G. C. Wang, "Enhanced cold field emission from 〈100〉 oriented β–W nanoemitters," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 22, p. 1048, 2004.
    [134] M. J. Riley, B. Williams, G. Y. Condon, J. Borja, T. M. Lu, W. N. Gill, et al., "Photocatalytic properties of porous titania grown by oblique angle deposition," Journal of Applied Physics, vol. 111, p. 074904, 2012.
    [135] K. M. A. Sobahan, Y. J. Park, J. J. Kim, Y. S. Shin, J. B. Kim, and C. K. Hwangbo, "Nanostructured optical thin films fabricated by oblique angle deposition," Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 1, p. 045005, 2011.
    [136] M. Benson, P. Shah, M. Marciniak, A. Sarangan, and A. Urbas, "Optical Characterization of Silver Nanorod Thin Films Grown Using Oblique Angle Deposition," Journal of Nanomaterials, vol. 2014, pp. 1-8, 2014.
    [137] B. D. Polat, O. Keles, Z. H. Chen, and K. Amine, "Si–Cu alloy nanowires grown by oblique angle deposition as a stable negative electrode for Li-ion batteries," Journal of Materials Science, vol. 51, pp. 6207-6219, 2016.
    [138] L. G. Daza, R. Castro-Rodríguez, M. Cirerol-Carrillo, E. A. Martín-Tovar, J. Méndez-Gamboa, R. Medina-Esquivel, et al., "Nanocolumnar CdS thin films grown by glancing angle deposition from a sublimate vapor effusion source," Journal of Applied Research and Technology, vol. 15, pp. 271-277, 2017.
    [139] C. Grüner, S. Liedtke, J. Bauer, S. G. Mayr, and B. Rauschenbach, "Morphology of Thin Films Formed by Oblique Physical Vapor Deposition," ACS Applied Nano Materials, vol. 1, pp. 1370-1376, 2018.
    [140] S. Liedtke, C. Gruner, J. W. Gerlach, and B. Rauschenbach, "Comparative study of sculptured metallic thin films deposited by oblique angle deposition at different temperatures," Beilstein J Nanotechnol, vol. 9, pp. 954-962, 2018.
    [141] S. V. Kesapragada and D. Gall, "Two-component nanopillar arrays grown by Glancing Angle Deposition," Thin Solid Films, vol. 494, pp. 234-239, 2006.
    [142] W. K. Choi, L. Li, H. G. Chew, and F. Zheng, "Synthesis and structural characterization of germanium nanowires from glancing angle deposition," Nanotechnology, vol. 18, p. 385302, 2007.
    [143] A. K. Kar, P. Morrow, X. T. Tang, T. C. Parker, H. Li, J. Y. Dai, et al., "Epitaxial multilayered Co/Cu ferromagnetic nanocolumns grown by oblique angle deposition," Nanotechnology, vol. 18, p. 295702, 2007.
    [144] J. Song, J. Zhou, and Z. L. Wang, "Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment," Nano Lett, vol. 6, pp. 1656-1652, 2006.
    [145] X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z. L. Wang, "Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire," Nano Lett, vol. 6, pp. 2768-2772, 2006.
    [146] Y. Gao and Z. L. Wang, "Electrostatic Potential in a Bent Piezoelectric Nanowire. The Fundamental Theory of Nanogenerator and Nanopiezotronics," Nano Lett, vol. 7, pp. 2499-2505, 2007.
    [147] J. H. He, C. L. Hsin, J. Liu, L. J. Chen, and Z. L. Wang, "Piezoelectric Gated Diode of a Single ZnO Nanowire," Advanced Materials, vol. 19, pp. 781-784, 2007.
    [148] J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, et al., "Flexible Piezotronic Strain Sensor," Nano Lett, vol. 8, pp. 3035-3040, 2008.
    [149] P. Fei, P. H. Yeh, J. Zhou, S. Xu, Y. Gao, J. Song, et al., "Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire," Nano Lett, vol. 9, pp. 3435-9, Oct 2009.
    [150] C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, "Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency," Nano Lett, vol. 10, pp. 726-31, Feb 10 2010.
    [151] Z. L. Wang, R. Yang, J. Zhou, Y. Qin, C. Xu, Y. Hu, et al., "Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics," Materials Science and Engineering: R: Reports, vol. 70, pp. 320-329, 2010.
    [152] Z. L. Wang, "Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics," Nano Today, vol. 5, pp. 540-552, 2010.
    [153] W. Wu, Y. Wei, and Z. L. Wang, "Strain-gated piezotronic logic nanodevices," Adv Mater, vol. 22, pp. 4711-5, Nov 9 2010.
    [154] Y. Zhang, Y. Liu, and Z. L. Wang, "Fundamental theory of piezotronics," Adv Mater, vol. 23, pp. 3004-13, Jul 19 2011.
    [155] W. Han, Y. Zhou, Y. Zhang, C.-Y. Chen, L. Lin, X. Wang, et al., "Strain-Gated Piezotronic Transistors Based on Vertical Zinc Oxide Nanowires," ACS Nano, vol. 6, pp. 3760-3766, 2012.
    [156] R. Yu, X. Wang, W. Peng, W. Wu, Y. Ding, S. Li, et al., "Piezotronic Effect on the Sensitivity and Signal Level of Schottky Contacted Proactive Micro/Nanowire Nanosensors," ACS Nano, vol. 7, pp. 1803-1810, 2013.
    [157] W. Wu, C. Pan, Y. Zhang, X. Wen, and Z. L. Wang, "Piezotronics and piezo-phototronics – From single nanodevices to array of devices and then to integrated functional system," Nano Today, vol. 8, pp. 619-642, 2013.
    [158] Z. L. Wang and W. Wu, "Piezotronics and piezo-phototronics: fundamentals and applications," National Science Review, vol. 1, pp. 62-90, 2014.
    [159] W. Wu, X. Wen, and Z. L. Wang, "Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging," Science, vol. 340, pp. 952-7, May 24 2013.
    [160] R. Yu, W. Wu, C. Pan, Z. Wang, Y. Ding, and Z. L. Wang, "Piezo-phototronic Boolean logic and computation using photon and strain dual-gated nanowire transistors," Adv Mater, vol. 27, pp. 940-7, Feb 4 2015.
    [161] W. Wu and Z. L. Wang, "Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics," Nature Reviews Materials, vol. 1, 2016.
    [162] S. Liu, L. Wang, X. Feng, Z. Wang, Q. Xu, S. Bai, et al., "Ultrasensitive 2D ZnO Piezotronic Transistor Array for High Resolution Tactile Imaging," Adv Mater, vol. 29, Apr 2017.
    [163] L. Wang, S. Liu, X. Feng, Q. Xu, S. Bai, L. Zhu, et al., "Ultrasensitive Vertical Piezotronic Transistor Based on ZnO Twin Nanoplatelet," ACS Nano, vol. 11, pp. 4859-4865, May 23 2017.
    [164] F.-R. Fan, Z.-Q. Tian, and Z. Lin Wang, "Flexible triboelectric generator," Nano Energy, vol. 1, pp. 328-334, 2012.
    [165] S. Wang, L. Lin, and Z. L. Wang, "Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics," Nano Lett, vol. 12, pp. 6339-46, Dec 12 2012.
    [166] G. Zhu, C. Pan, W. Guo, C. Y. Chen, Y. Zhou, R. Yu, et al., "Triboelectric-generator-driven pulse electrodeposition for micropatterning," Nano Lett, vol. 12, pp. 4960-5, Sep 12 2012.
    [167] Z. L. Wang, "Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors," ACS Nano, vol. 7, pp. 9533-9557, 2013.
    [168] Z. L. Wang, "On Maxwell's displacement current for energy and sensors: the origin of nanogenerators," Materials Today, vol. 20, pp. 74-82, 2017.
    [169] Z. L. Wang, "Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives," Faraday Discuss, vol. 176, pp. 447-58, 2014.
    [170] G. Zhu, Y. S. Zhou, P. Bai, X. S. Meng, Q. Jing, J. Chen, et al., "A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification," Adv Mater, vol. 26, pp. 3788-96, Jun 18 2014.
    [171] G. Zhu, Z. H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, et al., "Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator," Nano Lett, vol. 13, pp. 847-53, Feb 13 2013.
    [172] S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu, Y. S. Zhou, et al., "Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding," Adv Mater, vol. 26, pp. 6720-8, Oct 22 2014.
    [173] X.-S. Zhang, M.-D. Han, B. Meng, and H.-X. Zhang, "High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies," Nano Energy, vol. 11, pp. 304-322, 2015.
    [174] J. Wang, C. Wu, Y. Dai, Z. Zhao, A. Wang, T. Zhang, et al., "Achieving ultrahigh triboelectric charge density for efficient energy harvesting," Nat Commun, vol. 8, p. 88, Jul 20 2017.
    [175] Y. Zi, C. Wu, W. Ding, and Z. L. Wang, "Maximized Effective Energy Output of Contact-Separation-Triggered Triboelectric Nanogenerators as Limited by Air Breakdown," Advanced Functional Materials, vol. 27, p. 1700049, 2017.
    [176] Z. Fang, K. H. Chan, X. Lu, C. F. Tan, and G. W. Ho, "Surface texturing and dielectric property tuning toward boosting of triboelectric nanogenerator performance," Journal of Materials Chemistry A, vol. 6, pp. 52-57, 2018.
    [177] X. Xia, J. Chen, H. Guo, G. Liu, D. Wei, Y. Xi, et al., "Embedding variable micro-capacitors in polydimethylsiloxane for enhancing output power of triboelectric nanogenerator," Nano Research, vol. 10, pp. 320-330, 2016.
    [178] J. W. Lee, H. J. Cho, J. Chun, K. N. Kim, S. Kim, C. W. Ahn, et al., "Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancemen," Science Advances, vol. 3, 2017.
    [179] J. Chen, H. Guo, X. He, G. Liu, Y. Xi, H. Shi, et al., "Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film," ACS Appl Mater Interfaces, vol. 8, pp. 736-44, Jan 13 2016.
    [180] S. Niu, S. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. Hu, et al., "Theoretical study of contact-mode triboelectric nanogenerators as an effective power source," Energy & Environmental Science, vol. 6, p. 3576, 2013.
    [181] H. Wang, M. Shi, K. Zhu, Z. Su, X. Cheng, Y. Song, et al., "High performance triboelectric nanogenerators with aligned carbon nanotubes," Nanoscale, vol. 8, pp. 18489-18494, Nov 3 2016.
    [182] P.-K. Yang, Z.-H. Lin, K. C. Pradel, L. Lin, X. Li, X. Wen, et al., "Paper-Based Origami Triboelectric Nanogenerators and Self-Powered Pressure Sensors," ACS Nano, vol. 9, pp. 901-907, 2015.
    [183] J. Chun, B. U. Ye, J. W. Lee, D. Choi, C. Y. Kang, S. W. Kim, et al., "Boosted output performance of triboelectric nanogenerator via electric double layer effect," Nat Commun, vol. 7, p. 12985, Oct 5 2016.
    [184] X. Xia, J. Chen, G. Liu, M. S. Javed, X. Wang, and C. Hu, "Aligning graphene sheets in PDMS for improving output performance of triboelectric nanogenerator," Carbon, vol. 111, pp. 569-576, 2017.
    [185] W. Seung, M. K. Gupta, K. Y. Lee, K.-S. Shin, J.-H. Lee, T. Y. Kim, et al., "Nanopatterned Textile-Based Wearable Triboelectric Nanogenerator," ACS Nanos, vol. 9, pp. 3501-3509, 2015.
    [186] V. L. Trinh and C. K. Chung, "Harvesting mechanical energy, storage, and lighting using a novel PDMS based triboelectric generator with inclined wall arrays and micro-topping structure," Applied Energy, vol. 213, pp. 353-365, 2018.
    [187] Y. S. Zhou, Y. Liu, G. Zhu, Z. H. Lin, C. Pan, Q. Jing, et al., "In situ quantitative study of nanoscale triboelectrification and patterning," Nano Lett, vol. 13, pp. 2771-6, Jun 12 2013.
    [188] X.-W. Zhang, G.-Z. Li, G.-G. Wang, J.-L. Tian, Y.-L. Liu, D.-M. Ye, et al., "High-Performance Triboelectric Nanogenerator with Double-Surface Shape-Complementary Microstructures Prepared by Using Simple Sandpaper Templates," ACS Sustainable Chemistry & Engineering, vol. 6, pp. 2283-2291, 2018.
    [189] S. Lee, Y. Lee, D. Kim, Y. Yang, L. Lin, Z.-H. Lin, et al., "Triboelectric nanogenerator for harvesting pendulum oscillation energy," Nano Energy, vol. 2, pp. 1113-1120, 2013.
    [190] P. Bai, G. Zhu, Y. Liu, J. Chen, Q. Jing, W. Yang, et al., "Cylindrical Rotating Triboelectric Nanogenerator," ACS Nano, vol. 7, pp. 6361-6366, 2013.
    [191] Y. Yang, H. Zhang, G. Zhu, S. Lee, Z.-H. Lin, and Z. L. Wang, "Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies," ACS Nano, vol. 7, pp. 785-790, 2013.
    [192] L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu, Y. Hu, et al., "Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy," Nano Lett, vol. 13, pp. 2916-23, Jun 12 2013.
    [193] Y. Yang, H. Zhang, and Z. L. Wang, "Direct-Current Triboelectric Generator," Advanced Functional Materials, vol. 24, pp. 3745-3750, 2014.
    [194] Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, et al., "Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency," Adv Mater, vol. 26, pp. 6599-607, Oct 2014.
    [195] C. Zhang, T. Zhou, W. Tang, C. Han, L. Zhang, and Z. L. Wang, "Rotating-Disk-Based Direct-Current Triboelectric Nanogenerator," Advanced Energy Materials, vol. 4, p. 1301798, 2014.
    [196] D. Kim, S.-B. Jeon, J. Y. Kim, M.-L. Seol, S. O. Kim, and Y.-K. Choi, "High-performance nanopattern triboelectric generator by block copolymer lithography," Nano Energy, vol. 12, pp. 331-338, 2015.
    [197] T. Zhou, L. Zhang, F. Xue, W. Tang, C. Zhang, and Z. L. Wang, "Multilayered electret films based triboelectric nanogenerator," Nano Research, vol. 9, pp. 1442-1451, 2016.
    [198] J. Chen, W. Tang, C. Lu, L. Xu, Z. Yang, B. Chen, et al., "Characteristics of triboelectrification on dielectric surfaces contacted with a liquid metal in different gases," Applied Physics Letters, vol. 110, p. 201603, 2017.
    [199] W. S. Jung, M. G. Kang, H. G. Moon, S. H. Baek, S. J. Yoon, Z. L. Wang, et al., "High output piezo/triboelectric hybrid generator," Sci Rep, vol. 5, p. 9309, Mar 20 2015.
    [200] G. Suo, Y. Yu, Z. Zhang, S. Wang, P. Zhao, J. Li, et al., "Piezoelectric and Triboelectric Dual Effects in Mechanical-Energy Harvesting Using BaTiO3/Polydimethylsiloxane Composite Film," ACS Appl Mater Interfaces, vol. 8, pp. 34335-34341, Dec 21 2016.
    [201] G. Hassan, F. Khan, A. Hassan, S. Ali, J. Bae, and C. H. Lee, "A flat-panel-shaped hybrid piezo/triboelectric nanogenerator for ambient energy harvesting," Nanotechnology, vol. 28, p. 175402, Apr 28 2017.
    [202] J. Kim, J. H. Lee, H. Ryu, J.-H. Lee, U. Khan, H. Kim, et al., "High-Performance Piezoelectric, Pyroelectric, and Triboelectric Nanogenerators Based on P(VDF-TrFE) with Controlled Crystallinity and Dipole Alignment," Advanced Functional Materials, vol. 27, p. 1700702, 2017.
    [203] K. Zhang, S. Wang, and Y. Yang, "A One-Structure-Based Piezo-Tribo-Pyro-Photoelectric Effects Coupled Nanogenerator for Simultaneously Scavenging Mechanical, Thermal, and Solar Energies," Advanced Energy Materials, vol. 7, p. 1601852, 2017.
    [204] Y. H. Kwon, S.-H. Shin, Y.-H. Kim, J.-Y. Jung, M. H. Lee, and J. Nah, "Triboelectric contact surface charge modulation and piezoelectric charge inducement using polarized composite thin film for performance enhancement of triboelectric generators," Nano Energy, vol. 25, pp. 225-231, 2016.
    [205] Y. Zi, L. Lin, J. Wang, S. Wang, J. Chen, X. Fan, et al., "Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing," Adv Mater, vol. 27, pp. 2340-7, Apr 8 2015.
    [206] X. Yang and W. A. Daoud, "Triboelectric and Piezoelectric Effects in a Combined Tribo-Piezoelectric Nanogenerator Based on an Interfacial ZnO Nanostructure," Advanced Functional Materials, vol. 26, pp. 8194-8201, 2016.
    [207] Z.-H. Lin, Y. Xie, Y. Yang, S. Wang, G. Zhu, and Z. L. Wang, "Enhanced Triboelectric Nanogenerators and Triboelectric Nanosensor Using Chemically Modified TiO2 Nanomaterials," ACS Nano, vol. 7, pp. 4554-4560, 2013.
    [208] X. Zheng, J. Su, X. Wei, T. Jiang, S. Gao, and Z. L. Wang, "Self-Powered Electrochemistry for the Oxidation of Organic Molecules by a Cross-Linked Triboelectric Nanogenerator," Adv Mater, vol. 28, pp. 5188-94, Jul 2016.
    [209] Y. H. Kwon, S. H. Shin, J. Y. Jung, and J. Nah, "Scalable and enhanced triboelectric output power generation by surface functionalized nanoimprint patterns," Nanotechnology, vol. 27, p. 205401, May 20 2016.
    [210] C. Zhang, W. Tang, C. Han, F. Fan, and Z. L. Wang, "Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy," Adv Mater, vol. 26, pp. 3580-91, Jun 11 2014.
    [211] S. Niu and Z. L. Wang, "Theoretical systems of triboelectric nanogenerators," Nano Energy, vol. 14, pp. 161-192, 2015.
    [212] K. Dai, X. Wang, S. Niu, F. Yi, Y. Yin, L. Chen, et al., "Simulation and structure optimization of triboelectric nanogenerators considering the effects of parasitic capacitance," Nano Research, vol. 10, pp. 157-171, 2016.
    [213] N. Cui, L. Gu, J. Liu, S. Bai, J. Qiu, J. Fu, et al., "High performance sound driven triboelectric nanogenerator for harvesting noise energy," Nano Energy, vol. 15, pp. 321-328, 2015.
    [214] H. Zhang, Y. Yang, Y. Su, J. Chen, C. Hu, Z. Wu, et al., "Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol," Nano Energy, vol. 2, pp. 693-701, 2013.
    [215] J. Chen and Z. L. Wang, "Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator," Joule, vol. 1, pp. 480-521, 2017.
    [216] W. Yang, J. Chen, G. Zhu, J. Yang, P. Bai, Y. Su, et al., "Harvesting Energy from the Natural Vibration of Human Walking," ACS Nano, vol. 7, pp. 11317-11324, 2013.
    [217] A. Proto, M. Penhaker, S. Conforto, and M. Schmid, "Nanogenerators for Human Body Energy Harvesting," Trends Biotechnol, vol. 35, pp. 610-624, Jul 2017.
    [218] T. Jiang, L. M. Zhang, X. Chen, C. B. Han, W. Tang, C. Zhang, et al., "Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy," ACS Nano, vol. 9, pp. 12562-12572, 2015.
    [219] U. Khan and S. W. Kim, "Triboelectric Nanogenerators for Blue Energy Harvesting," ACS Nano, vol. 10, pp. 6429-32, Jul 26 2016.
    [220] Z. Saadatnia, E. Asadi, H. Askari, J. Zu, and E. Esmailzadeh, "Modeling and performance analysis of duck-shaped triboelectric and electromagnetic generators for water wave energy harvesting," International Journal of Energy Research, vol. 41, pp. 2392-2404, 2017.
    [221] L. M. Zhang, C. B. Han, T. Jiang, T. Zhou, X. H. Li, C. Zhang, et al., "Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy," Nano Energy, vol. 22, pp. 87-94, 2016.
    [222] T. X. Xiao, T. Jiang, J. X. Zhu, X. Liang, L. Xu, J. J. Shao, et al., "Silicone-Based Triboelectric Nanogenerator for Water Wave Energy Harvesting," ACS Appl Mater Interfaces, vol. 10, pp. 3616-3623, Jan 31 2018.
    [223] Z. L. Wang, T. Jiang, and L. Xu, "Toward the blue energy dream by triboelectric nanogenerator networks," Nano Energy, vol. 39, pp. 9-23, 2017.
    [224] S. Wang, X. Mu, Y. Yang, C. Sun, A. Y. Gu, and Z. L. Wang, "Flow-driven triboelectric generator for directly powering a wireless sensor node," Adv Mater, vol. 27, pp. 240-8, Jan 14 2015.
    [225] S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, et al., "Theory of sliding-mode triboelectric nanogenerators," Adv Mater, vol. 25, pp. 6184-93, Nov 20 2013.
    [226] S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, and Z. L. Wang, "Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism," Nano Lett, vol. 13, pp. 2226-33, May 8 2013.
    [227] B. Bera, "Literature Review on Triboelectric Nanogenerator," Imperial Journal of Interdisciplinary Research, vol. 2, pp. 1263-1271, 2016.
    [228] Y. Yang, Y. S. Zhou, H. Zhang, Y. Liu, S. Lee, and Z. L. Wang, "A single-electrode based triboelectric nanogenerator as self-powered tracking system," Adv Mater, vol. 25, pp. 6594-601, Dec 3 2013.
    [229] Y. Mao, D. Geng, E. Liang, and X. Wang, "Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires," Nano Energy, vol. 15, pp. 227-234, 2015.
    [230] C. Cui, X. Wang, Z. Yi, B. Yang, X. Wang, X. Chen, et al., "Flexible Single-Electrode Triboelectric Nanogenerator and Body Moving Sensor Based on Porous Na2CO3/Polydimethylsiloxane Film," ACS Appl Mater Interfaces, vol. 10, pp. 3652-3659, Jan 31 2018.
    [231] S. Niu, Y. Liu, X. Chen, S. Wang, Y. S. Zhou, L. Lin, et al., "Theory of freestanding triboelectric-layer-based nanogenerators," Nano Energy, vol. 12, pp. 760-774, 2015.
    [232] H. Guo, X. Jia, L. Liu, X. Cao, N. Wang, and Z. L. Wang, "Freestanding Triboelectric Nanogenerator Enables Noncontact Motion-Tracking and Positioning," ACS Nano, vol. 12, pp. 3461-3467, Apr 24 2018.
    [233] X. Ren, H. Fan, C. Wang, J. Ma, and N. Zhao, "Coaxial rotatory-freestanding triboelectric nanogenerator for effective energy scavenging from wind," Smart Materials and Structures, vol. 27, p. 065016, 2018.
    [234] X. S. Zhang, M. D. Han, R. X. Wang, F. Y. Zhu, Z. H. Li, W. Wang, et al., "Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems," Nano Lett, vol. 13, pp. 1168-72, Mar 13 2013.
    [235] Q. Zheng, Y. Zou, Y. Zhang, Z. Liu, B. Shi, X. Wang, et al., "Biodegradable triboelectric nanogenerator as a life-time designed implantable power source," Science Advances, vol. 2, 2016.
    [236] Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan, W. Yuan, et al., "In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator," Adv Mater, vol. 26, pp. 5851-6, Sep 3 2014.
    [237] H. Yu, X. He, W. Ding, Y. Hu, D. Yang, S. Lu, et al., "A Self-Powered Dynamic Displacement Monitoring System Based on Triboelectric Accelerometer," Advanced Energy Materials, vol. 7, p. 1700565, 2017.
    [238] P. Song, S. Kuang, N. Panwar, G. Yang, D. J. Tng, S. C. Tjin, et al., "A Self-Powered Implantable Drug-Delivery System Using Biokinetic Energy," Adv Mater, vol. 29, Mar 2017.
    [239] J. Li and X. Wang, "Research Update: Materials design of implantable nanogenerators for biomechanical energy harvesting," APL Mater, vol. 5, Mar 2017.
    [240] A. Chandrasekhar, N. R. Alluri, B. Saravanakumar, S. Selvarajan, and S. J. Kim, "Human Interactive Triboelectric Nanogenerator as a Self-Powered Smart Seat," ACS Appl Mater Interfaces, vol. 8, pp. 9692-9, Apr 20 2016.
    [241] L. Zheng, Z.-H. Lin, G. Cheng, W. Wu, X. Wen, S. Lee, et al., "Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy," Nano Energy, vol. 9, pp. 291-300, 2014.
    [242] L. Zhang, B. Zhang, J. Chen, L. Jin, W. Deng, J. Tang, et al., "Lawn Structured Triboelectric Nanogenerators for Scavenging Sweeping Wind Energy on Rooftops," Adv Mater, vol. 28, pp. 1650-6, Feb 24 2016.
    [243] Y. Liu, S. Niu, and Z. L. Wang, "Theory of Tribotronics," Advanced Electronic Materials, vol. 1, p. 1500124, 2015.
    [244] C. Zhang and Z. L. Wang, "Tribotronics—A new field by coupling triboelectricity and semiconductor," Nano Today, vol. 11, pp. 521-536, 2016.
    [245] C. Zhang, L. M. Zhang, W. Tang, C. B. Han, and Z. L. Wang, "Tribotronic Logic Circuits and Basic Operations," Advanced Materials, vol. 27, pp. 3533-3540, 2015.
    [246] L. M. Zhang, Z. W. Yang, Y. K. Pang, T. Zhou, C. Zhang, and Z. L. Wang, "Tribotronic triggers and sequential logic circuits," Nano Research, vol. 10, pp. 3534-3542, 2017.
    [247] C. Zhang, W. Tang, L. Zhang, C. Han, and Z. L. Wang, "Contact Electrification Field-Effect Transistor," ACS Nano, vol. 8, pp. 8702-8709, 2014.
    [248] J. Chen, G. Zhu, W. Yang, Q. Jing, P. Bai, Y. Yang, et al., "Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor," Adv Mater, vol. 25, pp. 6094-9, Nov 13 2013.
    [249] B. Meng, W. Tang, Z.-h. Too, X. Zhang, M. Han, W. Liu, et al., "A transparent single-friction-surface triboelectric generator and self-powered touch sensor," Energy & Environmental Science, vol. 6, p. 3235, 2013.
    [250] J. Wang, X. Li, Y. Zi, S. Wang, Z. Li, L. Zheng, et al., "A Flexible Fiber-Based Supercapacitor-Triboelectric-Nanogenerator Power System for Wearable Electronics," Adv Mater, vol. 27, pp. 4830-6, Sep 2 2015.
    [251] X. Wang, S. Wang, Y. Yang, and Z. L. Wang, "Hybridized Electromagnetic–Triboelectric Nanogenerator for Scavenging Air-Flow Energy to Sustainably Power Temperature Sensors," vol. 9, 2015.
    [252] Z. L. Wang, J. Chen, and L. Lin, "Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors," Energy & Environmental Science, vol. 8, pp. 2250-2282, 2015.
    [253] X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, et al., "Wearable Self-Charging Power Textile Based on Flexible Yarn Supercapacitors and Fabric Nanogenerators," Adv Mater, vol. 28, pp. 98-105, Jan 6 2016.
    [254] W. Xu, L.-B. Huang, M.-C. Wong, L. Chen, G. Bai, and J. Hao, "Environmentally Friendly Hydrogel-Based Triboelectric Nanogenerators for Versatile Energy Harvesting and Self-Powered Sensors," Advanced Energy Materials, vol. 7, p. 1601529, 2017.
    [255] Z. Lin, J. Chen, and J. Yang, "Recent Progress in Triboelectric Nanogenerators as a Renewable and Sustainable Power Source," Journal of Nanomaterials, vol. 2016, pp. 1-24, 2016.
    [256] X. Wang, H. Zhang, L. Dong, X. Han, W. Du, J. Zhai, et al., "Self-Powered High-Resolution and Pressure-Sensitive Triboelectric Sensor Matrix for Real-Time Tactile Mapping," Adv Mater, vol. 28, pp. 2896-903, Apr 20 2016.
    [257] Q. Shi, H. Wang, T. Wang, and C. Lee, "Self-powered liquid triboelectric microfluidic sensor for pressure sensing and finger motion monitoring applications," Nano Energy, vol. 30, pp. 450-459, 2016.
    [258] D. J. Lacks and R. M. Sankaran, "Triboelectric charging in single-component particle systems," Particulate Science and Technology, vol. 34, pp. 55-62, 2015.
    [259] K. Dong, J. Deng, Y. Zi, Y. C. Wang, C. Xu, H. Zou, et al., "3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self-Powered Active Motion Sensors," Adv Mater, vol. 29, Oct 2017.
    [260] K.-H. Kim, A. Talebzadeh, D. Pommerenke, J. Birt, L. Guan, N.-H. Goo, et al., "A study on the triboelectric charging of display glass during the roller transfer process–modeling and characterization," Journal of Electrostatics, vol. 86, pp. 24-33, 2017.
    [261] X. Wang, Y. Zhang, X. Zhang, Z. Huo, X. Li, M. Que, et al., "A Highly Stretchable Transparent Self-Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics," Adv Mater, vol. 30, p. e1706738, Mar 2018.
    [262] T. Bu, T. Xiao, Z. Yang, G. Liu, X. Fu, J. Nie, et al., "Stretchable Triboelectric-Photonic Smart Skin for Tactile and Gesture Sensing," Adv Mater, vol. 30, p. e1800066, Apr 2018.
    [263] K. Dai, X. Wang, F. Yi, C. Jiang, R. Li, and Z. You, "Triboelectric nanogenerators as self-powered acceleration sensor under high- g impact," Nano Energy, vol. 45, pp. 84-93, 2018.
    [264] J. Chung, H. Yong, H. Moon, S. T. Choi, D. Bhatia, D. Choi, et al., "Capacitor-Integrated Triboelectric Nanogenerator Based on Metal-Metal Contact for Current Amplification," Advanced Energy Materials, vol. 8, p. 1703024, 2018.
    [265] X. Wang, S. Niu, F. Yi, Y. Yin, C. Hao, K. Dai, et al., "Harvesting Ambient Vibration Energy over a Wide Frequency Range for Self-Powered Electronics," ACS Nano, vol. 11, pp. 1728-1735, Feb 28 2017.
    [266] C. Zhang, W. Tang, Y. Pang, C. Han, and Z. L. Wang, "Active micro-actuators for optical modulation based on a planar sliding triboelectric nanogenerator," Adv Mater, vol. 27, pp. 719-26, Jan 27 2015.
    [267] W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X. M. Tao, "Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications," Adv Mater, vol. 26, pp. 5310-36, Aug 20 2014.
    [268] Q. Leng, H. Guo, X. He, G. Liu, Y. Kang, C. Hu, et al., "Flexible interdigital-electrodes-based triboelectric generators for harvesting sliding and rotating mechanical energy," J. Mater. Chem. A, vol. 2, pp. 19427-19434, 2014.
    [269] Y. Hu, J. Yang, S. Niu, W. Wu, and Z. L. Wang, "Hybridizing Triboelectrification and Electromagnetic Induction Effects for High-Efficient Mechanical Energy Harvesting," ACS Nano, vol. 8, pp. 7442-7450, 2014.
    [270] Y. H. Ko, G. Nagaraju, S. H. Lee, and J. S. Yu, "PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays," ACS Appl Mater Interfaces, vol. 6, pp. 6631-7, May 14 2014.
    [271] B. K. Yun, J. W. Kim, H. S. Kim, K. W. Jung, Y. Yi, M.-S. Jeong, et al., "Base-treated polydimethylsiloxane surfaces as enhanced triboelectric nanogenerators," Nano Energy, vol. 15, pp. 523-529, 2015.
    [272] X. He, H. Guo, X. Yue, J. Gao, Y. Xi, and C. Hu, "Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density," Nanoscale, vol. 7, pp. 1896-903, Feb 7 2015.
    [273] X. Y. Wei, S. Y. Kuang, H. Y. Li, C. Pan, G. Zhu, and Z. L. Wang, "Interface-Free Area-Scalable Self-Powered Electroluminescent System Driven by Triboelectric Generator," Sci Rep, vol. 5, p. 13658, Sep 4 2015.
    [274] M. Han, X. S. Zhang, X. Sun, B. Meng, W. Liu, and H. Zhang, "Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system," Sci Rep, vol. 4, p. 4811, Apr 28 2014.
    [275] S. Niu, Y. Liu, Y. S. Zhou, S. Wang, L. Lin, and Z. L. Wang, "Optimization of Triboelectric Nanogenerator Charging Systems for Efficient Energy Harvesting and Storage," IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 60, pp. 641-647, 2015.
    [276] X. Li, M.-H. Yeh, Z.-H. Lin, H. Guo, P.-K. Yang, J. Wang, et al., "Self-Powered Triboelectric Nanosensor for Microfluidics and Cavity-Confined Solution Chemistry," ACS Nano, vol. 9, pp. 11056-11063, 2015.
    [277] J.-H. Kim, J. Chun, J. W. Kim, W. J. Choi, and J. M. Baik, "Self-Powered, Room-Temperature Electronic Nose Based on Triboelectrification and Heterogeneous Catalytic Reaction," Advanced Functional Materials, vol. 25, pp. 7049-7055, 2015.
    [278] Y. Zi, S. Niu, J. Wang, Z. Wen, W. Tang, and Z. L. Wang, "Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators," Nat Commun, vol. 6, p. 8376, Sep 25 2015.
    [279] O. Dulub, L. A. Boatner, and U. Diebold, "STM study of the geometric and electronic structure of ZnO(0001)-Zn, (0001)-O, (1010), and (1120) surfaces," Surface Science, vol. 519, pp. 201-217, 2002.
    [280] H.Moormann, D.Kohl, and G.Heiland, "Work function and band bending on clean cleaved zinc oxide surfaces," Surface Science, vol. 80, pp. 261-264, 1979.
    [281] K. JACOBI, G. ZWICKER, and A. GUTMANN, "WORK FUNCTION, ELECTRON AFFINITY AND BAND BENDING OF ZINC OXIDE SURFACES," Surface Science vol. 141, pp. 109-125, 1984.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE