| 研究生: |
吳騏 Wu, Chi |
|---|---|
| 論文名稱: |
磁流變阻尼器之研發 Research and Development of Magnetorheological Damper |
| 指導教授: |
徐德修
Hsu, Deh-Shiu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 磁流變阻尼器 、基因演算 、半主動控制 、模糊控制 |
| 外文關鍵詞: | Genetic algorithm, Semi-Active control, MR damper, Fuzzy control |
| 相關次數: | 點閱:85 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近三十載在結構抗震的研發,主動、被動及半主動控制之理論及驗證儼然已形成一新興之科學學門-「結構控制」,而結構控制在工程上之應用亦已於世界各地發揮作用。其中,磁流變阻尼器(magnetorheological damper 簡稱為 MR damper)是一種受人矚目的半主動裝置,其因內含磁流變液(magnetorheological fluid)而具可控性。磁流變液是一種可隨外加磁場強弱,快速改變黏稠度的流體,可以在自由流體、黏滯性流體及半固體間作可逆變化。而由於磁流變阻尼器兼具穩定、低耗電、構造單純及出力範圍大等優點,所以被認為是一種可有效抵抗強震或強風之控制元件。
本文透過對磁流變阻尼器之設計、製作及測試,來瞭解磁流變阻尼器之特性。文中,除對磁流變液之配方、黏度試驗及其結果詳加介紹,磁流變阻尼器之內部構造及功能測試結果亦以照片及圖表加以說明。此外,本文採用Bouc-Wen model之改良數學模型來建立磁流變阻尼器之力量-位移及複雜的力量-速度關係。
結構安裝磁流變阻尼器並採用模糊控制法則之數值模擬結果顯示,結構安裝磁流變阻尼器具有不錯之減震效果,然而採用模糊控制最常被詬病之處為法則之未最佳化處理,本文乃運用基因演算法依安全、舒適及經濟等考量因子將模糊控制法則演算至最佳組合,而由分析結果顯示,最佳化之模糊控制法則明顯提升了減震的效果。
質量調諧阻尼器(tuned mass damper 簡稱 TMD)是一種在世界各大樓中廣泛被應用之減震裝置,其減震之原理是將阻尼器之振動頻率設計成與主結構第一振動頻率相近,當主結構受外力擺動時,阻尼器之質量塊因共振原理隨之擺盪以改變(減小)主結構之震幅。然TMD僅隨主結構第一振頻擺盪,對於具第二振頻反應明顯之高樓,難免會令人擔憂有其減震效用不足之問題。本文嘗試以磁流變阻尼器對一含TMD之結構進行補強分析。由數值模擬結果可知,TMD確實可以降低主結構反應,然而,經磁流變阻尼器補強後之TMD系統,更可進一步地提升結構在位移及加速度之減震效果。
本篇論文的目的在對磁流變阻尼器作一系列探討,包括磁流變液及磁流變阻尼器之製作及測試、磁流變阻尼器數學模型之建立、磁流變阻尼器於結構控制上之設計及補強案例分析還有控制法則採用之探討…等。藉由本篇論文的完成,冀能加快磁流變阻尼器於結構減震之應用。
Over the past three decades, the applications of structural controls for seismic hazard mitigation have been paid close attention to, with many innovative ideas proposed and new control devices designed, including the active, passive and semi-active. These systems usually employ supplemental damping devices to increase the energy dissipation capability of the protected structure. One of the most promising new devices proposed for structural protection is magnetorheological (MR) dampers. It is filled with MR fluid that can be changed, when exposed to a magnetic field, regularly from free flowing liquid, linear viscous one to semi-solid. Because of their mechanical simplicity, high dynamic range, low power requirements, large force capacity, and robustness, this class of devices has been shown to mesh well with application demands and constraints to offer an attractive means of protecting civil infrastructure systems against severe earthquake and wind loading.
In this dissertation, a fundamental understanding of the behavior of MR dampers has been researched and developed through the modeling, design and experimental verification of a MR damper. The manufacture, design and performance test details of MR fluid and MR damper are provided, and a phenomenological model based on the Bouc-Wen hysteresis model is adopted to predict both the force-displacement behavior and the complex nonlinear force-velocity response.
The design cases of seismic control using MR dampers on structures are investigated, but the applying of fuzzy control rules has always to deal with the classic problem of optimization. And due to the structural responses of analysis results, it can be confirmed that the reducing effects have an obviously improvement after an optimization by genetic algorithm.
The TMD system is usually designed to reduce the first mode vibration of structure or the resonance of some particular frequency. The MR damper is also chosen to reinforce the structural seismic resistance ability of the TMD system in this dissertation. In accordance with the simulation results, it can be shown that TMD can effectively reduce the response of the structure; however, it can provide further reducing effects with the reinforcement of the MR damper both in displacement and acceleration responses.
The studies reported in this dissertation are intended to provide insight into the behavior of MR dampers and their potential applications to structures. This work is expected to accelerate the implementation of these dampers in the areas of natural hazard protection and vibration mitigation in structures.
Bibliography
[1]. Ahmadian, M., and Poynor, J.C. (2001). “An Evaluation of Magneto Rheological Dampers for Controlling Gun Recoil Dynamics.” Shock and Vibration, 8:147-155.
[2]. Akbay, Z., and Aktan, H.M. (1990), “Intelligent energy dissipation devices.” Processing, 4th U.S. National Conf. on Earthquake Engineering, 3:427-435.
[3]. Akbay, Z., and Aktan, H.M. (1991). “Actively regulated friction slip devices.” Processing, 6th Canada Conference on Earthquake Engineering, 367-374.
[4]. Akbay, Z., and Aktan, H.M. (1995). “Abating earthquake effects on buildings by active slip brace devices.” Shock Vibration, 2:133-142.
[5]. Arslan, A., and Kaya, M. (2001). “Determination of Fuzzy Logic Membership Functions Using Genetic Algorithms.” Fuzzy Sets and Systems, 118:297-306.
[6]. Battaini, M., Casciati, F. and Faravelli, L. (1998). “Fuzzy control of structural vibration. An active mass system driven by a fuzzy controller.” Earthquake Engineering and Structural Dynamics, 27:1267-1276.
[7]. Bouc, R. (1967). “Forced vibration of mechanical system with hysteresis (Abstract).” Processing, 4th Conference on Nonlinear Oscillation, Prague, Czechoslovakia.
[8]. Burton, S.A., Makris, N., Konstantopoulos, I. and Antsaklis, P.J. (1996). “Modeling the response of ER damper: phenomenology and emulation.” Journal of Engineering Mechanics, 122:897-906.
[9]. Carlson, J.D., and Spencer Jr., B.F. (1996). “Magneto-Rheological Fluid Dampers for Semi-Active Seismic Control.” 3rd International Conference on Motion and Vibration Control, Chiba, Japan, 35-40.
[10]. Chang, C.C., and Roschke, P. (1998). “Neural network modeling of a magnetorheological damper.” Journal of Intelligent Material Systems and Structures, 9:755-764.
[11]. Chang, C.C., and Zhou, L. (2002). “Neural network emulation of inverse dynamics for a magnetorheological damper.” Journal of Structural Engineering, 128(2):231-239.
[12]. Chen T.Y., Chen C.J. (1997). “Improvements of Simple Genetic Algorithm in Structural Design.” International Journal for Numerical Methods in Engineering, 40(3):1923-1334.
[13]. Chen, Z.Q., Wang, X.Y., Ni, Y.Q. and Ko, J.M. (2002). “Field Measurements on Wind-Rain-Induced Vibration of Bridge Cables with and without MR Dampers.” 3rd World Conference on Structural Control, Como, Italy, 391-401.
[14]. Chen, Z.Q., Wang, X.Y., Ko, J.M., Spencer Jr., B.F. and Yang, G. (2004). “MR Damping System on Dongting Lake Cable-Stayed Bridge.” Science and Technology Magazine Online.
http://www.paper.edu.cn/scholar/known/chenzhengqing/chenzhengqing-5.pdf
[15]. Choi, K.M., Cho, S.W., Jung, H.J. and Lee, I.W. (2004). “Semi-Active Fuzzy Control for Seismic Response Reduction Using Magnetorheological Dampers.” Earthquake Engineering and Structural Dynamics, 33:723-736.
[16]. Chopra, A.K. (2001). Dynamics of Structures: Theory and Applications to Earthquake Engineering. Prentice Hall, Upper Saddle River, NJ.
[17]. Chowdhury, A.H., and Iwuchukwu, M.D. (1987). “The past and future of seismic effectiveness of tuned mass dampers”, Processing, 2nd International Symposium Structural Control (Leipholz, H. H. E. ed.), Martinus Nijhoff Publishers, 105-127.
[18]. Christenson, R.E., Spencer Jr., B.F., Johnson, E.A. and Seto, K. (2000). “Coupled Building Control Using "Smart" Damping Strategies.” Smart Systems for Bridges, Structures, and Highways, the 7th SPIE Annual International Smart Structures and NDE Symposia, Newport Beach, CA.
[19]. Christenson, R.E. (2001). “Semi-active Control of Civil Structures for Natural Hazard Mitigation: Analytical and Experimental Studies,” Dissertation, Civil Engineering, University of Notre Dame, Notre Dame, Indiana.
[20]. Chu S.Y., Soong T.T., Lin C.C., Chen Y.Z. (2002), “Time Delay Effect and Compensation on Direct Output Feedback Controlled Mass Damper Systems.” Earthquake Engineering and Structural Dynamics, 31(4):121-137.
[21]. Chu S.Y., Soong T.T., and Reinhorn A.M. (2005). Active, Hybrid and Semi-Active Structural Control - A Design and Implementation Handbook. John Wiley &Sons, Ltd.
[22]. Clark, A.J. (1988). “Multiple passive tuned mass dampers for reducing earthquake induced building motion”, Processing, 9th World Conference Earthquake Engineering, Tokyo-Kyoto, Japan, V:779-784.
[23]. Dalei, G. and Jianqiang, Y. (2002). “Semi-Active Seismic Isolation Control Based on MR Damper and Neural Networks.” The 6th International Conference on Motion and Vibration Control, Saitama, Japan, 13-18.
[24]. Den Hartog, J.P. (1947), Mechanical Vibrations, New York City, N.Y., McGraw-Hill.
[25]. Dodwell, D.J. and Cherry, S. (1994). “Structural control using semi-active friction damper.” Processing, 1st World Conf. on Struct. Control, FA1:59-68.
[26]. Dyke, S.J., Spencer Jr., B.F., Sain, M.K. and Carlson, J.D. (1996). “Modeling and control of magnetorheological dampers for seismic response reduction.” Smart Materials and Structures, 5:565-575.
[27]. Dyke, S.J., Spencer Jr., B.F., Sain, M.K., and Carlson, J.D. (1996a). “Seismic responsereduction using magnetorheological dampers.” Proceedings of IFAC World Congress, vol. L, Inteernational Federal of Automatic Control, 145-150.
[28]. Dyke, S.J. (1998). “Seismic Protection of a Benchmark Building Using Magnetorheological Dampers.” Processing, 2nd World Conference on Structural Control, Kyoto, Japan.
[29]. Dyke, S.J., Spencer Jr., B.F., Sain, M.K. and Carlson, J.D. (1998a). “Experimental study of MR dampers foe seismic protection.” Smart Materials and Structures: Special Issue on Large Civil Structures, 7(5):693-703.
[30]. Ehrgott, R. and Masri, S.F. (1992). “Modeling the oscillatory dynamic behavior of electrorheological materials in shear.” Smart Materials and Structures, 1:275-285.
[31]. Feng, Q. and Shinozuka, M. (1990). “Use of a variable damper for hybrid control of bridge response under earthquake.” Proceedings of U.S. National Workshop on Structural Control Research, USC Publication No. CE-9013.
[32]. Feng, Q., Shinozuka, M. and Fujii, S. (1993). “Friction-controllable sliding isolated systems.” Journal of Engineering Mechanics, ASCE, 119:1845-1864.
[33]. Fujino, Y. and Abe, M. (1993). “Design Formulas for Tuned Mass Dampers Based on a Perturbation Technique.” Earthquake Engineering and Structural Dynamics, 22:833-854.
[34]. Fujitani, H., Sodeyama, H., Tomura, T., Hiwatashi, T., Shiozaki, Y., Hata, K., Sunakoda, K., Morishita, S. and Soda, S. (2003). “Development of 400kN Magnetorheological Damper for a Real Base-Isolated Building.” Proceedings of SPIE - Smart Structures and Materials 2003: Damping and Isolation, San Diego, CA, 265-276.
[35]. Gamoto, D.R., and Filisko, F.E. (1991). “Dynamic mechanical studies of electrorheological materials: moderate frequencies.” Journal of Rheology, 35(3):399-425.
[36]. Gavin, H.P. and Dobossy, M. (2001). “Optimal Design of an MR Device.” Smart Systems and Materials 2001 - Smart Systems for Bridges, Structures, and Highways, Newport Beach, USA, 273-280.
[37]. Gavin, H.P., Hanson, R.D. and Filisko, F.E. (1996). “Electrorheological dampers, part 1: analysis and design.” Journal Applied Mechanics, ASME, 63:669-675.
[38]. Gavin, H.P., Hanson, R.D. and Filisko, F.E. (1996a). “Electrorheological dampers, part 2: testing and modeling.” J. Applied Mech., ASME, 63:676-682.
[39]. Ginder, J. M., Davis L. C. and Elie, L.D. (1996). “Rheology of magnetorheological fluids: Models and measurements.” International Journal of Modern Physics B, 10(23/24):3293-3303.
[40]. Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley.
[41]. Guo, M. S., Wu, C. and Hsu, D. S. (2006). “Physical Properties of Low Power Magnetorheological Damper,” The 8th National Conference on Structural Engineering, Nantou, Taiwan. (in Chinese)
(郭銘修、吳騏、徐德修,「低功率磁流變阻尼器物理特性之研究」,第八屆結構工程研討會,日月潭青年活動中心,南投,民國九十五年九月。)
[42]. Herschel, W.H. and Bulkley, R. (1926). “Model for time dependent behavior of fluids.” Processing, American Society of Testing Materials, 26, 621.
[43]. Hiemenz, G. J., Choi, Y.-T. and Wereley, N. M. (2000). “Seismic Control of Civil Structures Utilizing Semi-Active MR Bracing Systems.” Proceedings of SPIE, Newport Beach, CA, 217-228.
[44]. Hitchcock, G. H., Gordaninejad, F., Wang, X. (2002). “A New By-Pass, Fail-Safe, Magneto-Rheological Fluid Damper.” Proceedings of SPIE Conference on Smart Materials and Structures, San Diego.
[45]. Holland, J.H. (1975). Adaption in natural and artificial systems. The University Michigan Press, Ann Arbor.
[46]. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer Jr., B.F. and Yao, J.T.P. (1997). “Structural Control: Past, Present, and Future.” Journal of Engineering Mechanics, 123(9):897-971.
[47]. Inaudi, J.A. (1997). “Modulated homogeneous friction: a semi-active damping strategy.” Earthquake Engineering and Structural Dynamics, 26:361-376.
[48]. James C.P. (2001). “Innovative Designs for Magneto-Rheological Dampers.” Master Thesis, Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
[49]. Jansen, L.M., and Dyke, S.J. (2000). “Semi-active control strategies for MR dampers: Comparative study.” J. of Engineering Mechanics, 126(8):795-803.
[50]. Jin, G., Sain, M.K., Pham, K.D., Spencer Jr., B.F. and Ramallo, J.C. (2001). “Modeling MR-Dampers: A Nonlinear Blackbox Approach.” American Control Conference, Arlington, VA, 429-434.
[51]. Johnson, E.A., Baker, G.A., Spencer Jr., B.F. and Fujino, Y. (2004). “Semi-active damping of stay cables.” J. of Engineering Mechanics, in press.
http://www.usc.edu/dept/civil_eng/johnsone/papers/smartdamping_tautcable_jem.html
[52]. Kajima Corporation (2007). “Active-Passive Composite Tuned Mass Damper.”
http://moment.mit.edu/documentLibrary/Duox/duox.html
[53]. Kamath, G.M. and Wereley, N.M. (1997). “A nonlinear viscoelastic-plastic model for electrorheological fluids.” Smart Materials and Structures, 6(3):351-359.
[54]. Kawashima, K., Unjoh, S. and Shimizu, K. (1992). “Experiments on dynamics characteristics of variable damper.” Proceedings of Japan National Symposium on Structural Response Control, 121.
[55]. Ko, J.M., Zheng, G., Chen, Z.Q. and Ni, Y.Q. (2002). “Field Vibration Tests of Bridge Stay Cables Incorporated with Magneto-Rheological (MR) Dampers.” Smart Systems and Materials 2002 - Smart Systems for Bridges, Structures, and Highways, San Diego, USA, 30-40.
[56]. Kobori, T., Takahashi, M., Nasu, T., Niwa N. and Ogasawara, K. (1993). “Seismic response controlled structure with active variable stiffness system.” Earthquake Engineering and Structural Dynamics, 22:925-941.
[57]. Kuruta, N. and Kobori, T. et al. (2000). “Forced Vibration Test of a Building with Semi-Active Damper System.” Earthquake Engineering and Structural Dynamics, 29:629-645.
[58]. Li, W.H., Yao, G.Z., Chen, G., Yeo, S.H. and Yap, F.F. (2000). “Testing and Steady State Modeling of a Linear MR Damper under Sinusoidal Loading.” Smart Materials and Structures, 9:95-102.
[59]. Lin, P.Y., Roschke, P.N. and Loh, C.H. (2006). “Hybrid base-isolation with magnetorheological damper and fuzzy control.” Structural Control and Health Monitoring, 14(3):384-405.
[60]. Liu, Y., Gordaninejad, F., Evrensel, C.A. and Hitchcock, G. (2001). “An Experimental Study on Fuzzy Logic Vibration Control of a Bridge Using Fail-Safe Magneto-Rheological Fluid Dampers.” Smart Systems and Materials 2001- Smart Systems for Bridges, Structures, and Highways, Newport Beach, USA, 281-288.
[61]. Lord Corporation product bulletin (2007). “LORD MR Rotary Brake (RD-2087-01).” Cary, NC.
http://www.lord.com/Default.aspx?tabid=3364
[62]. Lord Corporation product bulletin (2007). “LORD Motion Master® Ride Management System.” Cary, NC.
http://www.lord.com/Default.aspx?tabid=3362
[63]. Markis, N., Burton, S.A., Hill, D. and Jordan, M. (1996). “Analysis and design of ER damper for seismic protection of structures.” Journal of Engineering Mechanics, 122:1003-1011.
[64]. Mitsubishi Steel MFG. CO., LTD. (2005). “Earthquake Isolation System and Tuned Mass Damper.” Chuo-ku, Tokyo, Japan
http://moment.mit.edu/documentLibrary/Paper011/paper011.html
[65]. Nagarajaiah, S. (1994). “Fuzzy Controller for Structures with Hybrid Isolation System.” First World Conference on Structural Control, Los Angeles, CA, TA2-67-76.
[66]. Ni, Y.Q., Chen, Y., Ko, J.M. and Cao, D.Q. (2002). “Neuro-Control of Cable Vibration Using Semi-Active Magneo-Rheological Dampers.” Engineering Structures, 24:295-307.
[67]. Niwa, N., Kobori, T., Takahashi, M., Midorikawa, H., Kurata, N. and Mizuno, T. (2000). “Dynamic loading test and simulation analysis of full-scale semi-active hydraulic damper for structural control.” Earthquake Engineering and Structural Dynamics, 29:789-812.
[68]. Patten W.N. (1999). “Field test of an intelligent stiffener for bridges at the I-35 Walnut Creek Bridge.” Earthquake Engineering and Structural Dynamics, 28:109-126.
[69]. Phillips, R.W. (1969). “Engineering applications of fluids with a variable yield stress.” Dissertation, University of California, Berkeley, California.
[70]. Rabinow, J. (1948). “The magnetic fluid clutch.” AIEE Transactions, 67:1308-1315.
[71]. Ramallo, J.C., Johnson, E.A., and Spencer Jr., B.F. (2002). “"Smart" Isolation for Seismic Control.” Journal of Engineering Mechanics, 128(10):1088-1099.
[72]. Rana, R., and Soong, T.T. (1998). “Parametric Study and Simplified Design of Tuned Mass Dampers.” Engineering Structures, 20(3):193-204.
[73]. Roschke, P.N. (2002). “Damage control of transportation structures using intelligent magnetorheological dampers.” Final Report of United States National Science Foundation (9912569).
[74]. Schurter, K.C., and Roschke, P.N. (2001). “Neuro-Fuzzy Control of Structures Using Acceleration Feedback.” Smart Materials and Structures, 10(4):770-779.
[75]. Sie, D.Y. (2005). “The Manufacture and Physical Investigation of Magnetorheological Fluid” Master Thesis, Civil Engineering National Cheng-Kung University, Tainan. (in Chinese)
(謝岱穎,「磁性流變流體之調製及其物性之研究」,碩士論文,國立成功大學土木工程學系,民國九十四年六月。)
[76]. Soong, T.T., and Spencer Jr., B.F. (2002). “Supplemental Energy Dissipation: State-of-the-Art and State-of-the-Practice.” Eng. Struc., 24:243-259.
[77]. Spencer Jr., B.F., Dyke, S.J. and Sain, M.K. (1996b). “Magnetorheological dampers: a new approach to seismic protection of structures.” Processing, Conference on Decision and Control, 676-681.
[78]. Spencer Jr., B.F., Dyke, S.J., Sain, M.K. and Carlson, J.D. (1997). “Phenomenological model for magnetorheological dampers.” Journal of Engineering Mechanics, 123(3):230-238.
[79]. Spencer Jr., B.F. and Sain, M.K. (1997a). “Controlling buildings: A new frontier in feedback.” Control Systems, IEEE, 7(6):19-35.
[80]. Spencer Jr., B.F., Yang, G., Carlson, J.D. and Sain, M.K. (1998). “‘Smart’ dampers for seismic protection of structures: a full-scale study.” Processing, 2nd World Conference on Structural Control, Kyoto, Japan, 417-426.
[81]. Spencer Jr., B.F. and Soong, T.T. (1999). “New Applications and Development of Active, Semi-Active and Hybrid Control Techniques for Seismic and Non-Seismic Vibration in the USA.” International Post-SMiRT Conference Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibration of Structures, Cheju, Korea.
[82]. Spencer Jr., B.F., Johnson, E.A. and Ramallo, J.C. (2000). “Smart isolation foe seismic control.” JSME International Journal, 43(3):704-711.
[83]. Spencer Jr., B.F. and Nagarajaiah, S. (2003). “State of the Art of Structural Control.” Journal of Structural Engineering, 129(7):845-856.
[84]. Stanway, R., Sproston, J.L. and Stevens, N.G. (1987). “Non-Linear Modelling of an Electro-Rheological Vibration Damper.” J. of Electrostatics, 20:167-184.
[85]. Subramanian, R.S., Reinhorn, A.M., Nagacajaiah, S. and Ryley, M.A. (1996). “Hybrid control of structures using fuzzy logic.” Microcomputers in Civil Engineering, 11:1-18.
[86]. Sunakoda, K., Sodeyama, H., Iwata, N., Fujitani, H. and Soda, S. (2000). “Dynamic characteristics of magneto-rheological fluid damper.” Processing, SPIE Smart Structure and Materials Conference, Newport Beach, California, 3989:194-203.
[87]. Symans, M.D., Constantinou, M.C., Taylor, D.P. and Garnjost, K.D. (1994). “Semi-active fluid viscous dampers for seismic response control.” Proceedings, 1st World Conference on Structural Control, FA4:3-12.
[88]. Symans, M.D. and Constantinou, M.C. (1997). “Experimental testing and analytical modeling of semi-active fluid dampers for seismic protection,” Journal of Intelligent Material Systems and Structures, 8(8):644-657.
[89]. Symans, M.D. and Kelly, S.W. (1999). “Fuzzy logic control of bridge structures using intelligent semi-active seismic isolation system.” Earthquake Engineering and Structural Dynamics, 28:37-60.
[90]. Tomoo S., Keiji S. and Kazuo T. (2001). “Vibration control characteristics of a hybrid mass damper system installed in tall buildings.” Earthquake Engineering and Structural Dynamics, 30(11):1677-1696.
[91]. Varadarajan, N. and Nagarajaiah, S. (2000). “Semi-Active Variable Stiffness Tuned Mass Damper for Response Control of Wind Excited Tall Buildings: Benchmark Problem.” Proceedings, Engineering Mechanics Conference, EM2000, Austin, TX.
[92]. Walid H. El-Aouar (2002). “Finite Element Analysis Based Modeling of Magneto Rheological Dampers.” Master Thesis, Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
[93]. Wallace E.K. III (1997). “Dimensionality in Fuzzy Systems.” Dissertation, Electrical Engineering, Texas A&M University, Austin, Texas.
[94]. Wang, D.H. and Liao, W.H. (2001). “Neural Network Modeling and Controllers for Magnetorheological Fluid Dampers.” IEEE International Fuzzy Systems Conference, 1323-1326.
[95]. Wang, X. and Gordaninejad, F. (2001). “Dynamic Modeling of Semi-Active ER/MR Fluid Dampers.” SPIE Conference on Smart Mat. and Struct., 82-91.
[96]. Wen, Y.K. (1976). “Method for random vibration of hysteretic systems.” Journal of Engineering Mechanics Division, 102(EM2):249-263.
[97]. Wereley, N.M., Pang, L. and Kamath, G.M. (1998). “Idealized hysteresis modeling of electrorheological and magnetorheological dampers.” Journal of Intelligent Materials, Systems and Structures, 9:642-649.
[98]. Winter, G., Periaux, J. and Galan, M. (1995). Genetic Algorithms in Engineering and Computer Science. JOHN WILEY & SON Ltd.
[99]. Wu, C., Lin, J.M. and Hsu, D.S. (2006) “Application of Semi-active control of Magneto-rheological Damper on structures”, Journal of Structural Engineering, 21(1):35-46. (in Chinese)
(吳騏、林家銘、徐德修,「磁流變阻尼器之結構半主動模糊控制」,結構工程期刊,第二十一卷,第一期,第35-46頁,民國九十五年三月。)
[100]. Xu, Y.L., Qu, W.L. and Ko, J.M. (2000). “Seismic Response Control of Frame Structures Using Magnetorheological/Electrorheological Dampers.” Earthquake Engineering and Structural Dynamics, 29:557-575.
[101]. Xu, Z.D., Shen, Y.P. and Guo, Y.Q. (2003). “Semi-Active Control of Structures Incorporated with Magnetorheological Dampers Using Neural-Networks.” Smart Materials and Structures, 12:80-87.
[102]. Yang, G. (2001). “Large-Scale Magnetorheological Fluid Damper for Vibration Mitigation: Modeling, Testing and Control.” Dissertation, Civil Engineering, University of Notre Dame, Notre Dame, Indiana.
[103]. Yang, G., Jung, H.J. and Spencer Jr., B.F. (2001a). “Dynamic Model of Full-Scale MR Dampers for Civil Engineering Applications.” US-Japan Workshop on Smart Structures for Improved Seismic Performance in Urban Regions, Seattle, WA, 213-224.
[104]. Yang, G., Spencer Jr., B.F., Dyke, S.J. and Sain, M.K. (2002). “Large-scale MR fluid dampers: Modeling and dynamic performance considerations.” Engineering Structures, 24(3):309-323.
[105]. Yau J.D. and Yang Y.B. (2003) “Vibration reduction for cable-stayed bridges traveled by high-speed trains.” Finite Elements in Analysis and Design, 40:341-359.
[106]. Yi, F., Dyke, S.J., Frech, S., and Carlson, J.D. (1998). “Investigation of Magnetorheological Dampers for Earthquake Hazard Mitigation.” Second World Conference on Structural Control, Kyoto, Japan. 349-358.
[107]. Yi, F., Dyke, S.J., Caicedo, J.M., and Carlson, J.D. (2001). “Experimental Verification of Multi-Input Seismic Control Strategies for Smart Dampers.” Journal of Engineering Mechanics, 127(11):1152-1164.
[108]. Yi, F. and Dyke, S.J. (2000). “Structural control systems: performance assessment.” Processing, American Control Conference, Chicago, IL.
[109]. Yoshioka, H., Ramallo, J.C., and Spencer Jr., B.F. (2002). “"Smart" Base Isolation Strategies Employing Magnetorheological Dampers.” Journal of Engineering Mechanics, 128(5):540-551.
[110]. Zadeh, L.A., (1965). “Fuzzy Sets.” Information and Control, 8, 338-353.
[111]. Zadeh, L.A., (1973). “Outline of a new approach to the analysis of complex systems and decision processes.” IEEE Trans. System, Man & Cybernetics, 1:28-44.
[112]. Zhang, Y.H. (2005). “Seismic Design for Fluid Dampers Controlled Structures by Genetic Algorithms”, Master Thesis, Civil Engineering, National Cheng-Kung University, Tainan, Taiwan.
[113]. Zhou, L., and Chang, C.C. (2000). “Adaptive Fuzzy Control for a Structure-MR Damper System.” SPIE- The International Society for Optical Engineering, Newport Beach, CA, 105-115.
[114]. Zhou, L., Chang, C.C., and Spencer Jr., B.F. (2002). “Intelligent Technology- Based Control of Motion and Vibration Using MR Dampers.” Earthquake Engineering and Engineering Vibration, 1(1):100-110.
[115]. Zhou, L., and Chang, C.C. (2003). “Adaptive fuzzy control for nonlinear building-magnetorheological damper system.” Journal of Structural Engineering, 129(7):905-913.
[116]. 林錦隆,「半主動摩擦阻尼器於結構防震應用之探討」,碩士論文,國立高雄第一科技大學營建工程學系,民國九十年七月。