簡易檢索 / 詳目顯示

研究生: 蔣闊丞
Chiang, Kuo-Cheng
論文名稱: 以化學氣相沉積法(CVD)側向生長氧化鋅奈米線於氣體感測之研究
The Research of Lateral Growth of ZnO Nanowires with CVD for Gas Sensing
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 116
中文關鍵詞: 氧化鋅奈米線化學氣相沉積側向生長氣體感測器
外文關鍵詞: laterally growth, ZnO nanowires, gas sensor, chemical vapor deposition
相關次數: 點閱:68下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究是先利用平面式基板作為生長氧化鋅奈米線之基板,經由化學氣相沉積法(CVD)改變其中不同的製程參數,如氧氬氣體流量比、生長溫度、基板距離等以生長氧化鋅奈米線,並利用SEM、TEM、XRD及CL等分析,探討不同生長參數對生長氧化鋅奈米線之影響,藉以找出生長氧化鋅奈米線的最佳生長參數;接著,在利用黃光微影製程製作出微指叉式電極作為生長氧化鋅奈米線之基板,經由上述實驗所得到的最佳生長參數再做進一步實驗以改變不同的製程參數,如不同放置距離、位置及角度以達到側向生長大量的氧化鋅奈米線而構成架橋,並經由SEM觀察其微指叉式電極上之氧化鋅奈米線之架橋情形,進而完成感測元件。最後,在不同的操作溫度及乙醇氣體濃度的感測條件下,探討氧化鋅奈米線氣體感測器其感測特性和可靠度。
      在本研究結果顯示,在爐管中生長氧化鋅奈米線具有一最佳位置,其位置具有足夠的鋅、氧成份鍵結形成氧化鋅以協助增加氧化鋅奈米線的長度及量,並成功的利用化學氣相沉積法在兩電極間側向生長氧化鋅奈米線構成架橋以形成氣體感測器,而其在操作溫度300℃、乙醇氣體濃度1500ppm時,感測度可達97%,且具有良好的靈敏度、穏定性及可靠度特性。

      This research uses plane substrates as the one to grow ZnO nanowires and changes different process parameter -such as ratio of O2:Ar、growth temperature、substrate distance etc.- with CVD process to grow ZnO nanowires . Also, the analyses of SEM、TEM、XRD and CL are used to discuss how different growth parameter affect the growth of ZnO nanowires, and by that we can find the best growth parameter to grow ZnO nanowires. Subsequently, with photolithography,we make the folk electrode to be the substrate to grow ZnO nanowires, using the best growth parameter gained from above experiment to do further experiments to change different process parameter( such as distance, position and and angle ) to laterally grow a great number of ZnO nanowires and form a bridge. With SEM, how ZnO nanobridge on the folk electrode can be observed, then sensing device can be done. At last, under different conditions of work temperature and the concentration of ethanol gas, we will discuss the sensitivity and reproduction of the ZnO nanowires gas sensors.
    The result of this research indicates that there is one best position for growing ZnO nanowires in furnace, where there are enough Zn and O2 forming ZnO to increase the volume and length of ZnO nanowires. And ZnO nanowires are successfully grown laterally between two electrodes to form a bridge and make a gas sensor. At work temperature of 300℃ and ethanol gas concentration of 1500ppm, the sensibility can reach 97%, and the gas sensor excels in sensitivity、stability and reproduction.

    摘要 ................................................................................................................................................................ I Abstract ......................................................................................................................................................... II 誌 謝 .......................................................................................................................................................... III 總目錄 .......................................................................................................................................................... IV 圖目錄 ....................................................................................................................................................... VIII 表目錄 ....................................................................................................................................................... XIII 第一章 緒論 ....................................................................................................................... 1 1-1. 前言 ................................................................................................................... 1 1-2. 研究動機與目的 ............................................................................................... 2 第二章 文獻回顧 ................................................................................................................ 3 2-1. 氣體感測器之種類 ........................................................................................... 3 2-1-1. 半導體型氣體感測器 ........................................................................... 3 2-1-2. 觸媒燃燒型氣體感測器 ....................................................................... 3 2-1-3. 電化學型氣體感測器 ........................................................................... 4 2-1-4. 場效電晶體型氣體感測器 ................................................................... 5 2-1-5. 石英振盪型氣體感測器 ....................................................................... 6 2-2. 半導體氣體感測器之工作原理 ....................................................................... 7 2-2-1. 蕭特基接觸 ........................................................................................... 7 2-2-2. 氧氣的吸附及待測氣體之作用 ........................................................... 9 2-2-3. 氧空位 ................................................................................................. 10 2-3. 半導體氣體感測材料之種類 ......................................................................... 12 2-4. 氣化鋅之特性及應用 ..................................................................................... 14 2-4-1. 光學性質 ............................................................................................. 16 2-4-2. 壓電性質 ............................................................................................. 16 2-4-3. 氣體感測性質 ..................................................................................... 17 2-5. 氧化鋅奈米線之成長方法 ............................................................................. 17 2-5-1. 化學氣相沉積法 ................................................................................. 18 2-5-2. 水熱法 ................................................................................................. 19 2-5-3. 模板法 ................................................................................................. 20 2-6. 氧化鋅奈米線之成長機制 ............................................................................. 21 2-6-1. 氣-液-固成長機制 .............................................................................. 21 2-6-2. 氣-固成長機制 .................................................................................... 22 2-6-3. 自結晶氣-液-固成長機制 .................................................................. 23 2-6-4. 氧化物輔助成長機制 ......................................................................... 24 2-7. 氧化鋅奈米線選區生長之方法 ..................................................................... 26 2-8. 氧化鋅奈米線側向生長之方法 ..................................................................... 28 第三章 實驗方法 .............................................................................................................. 31 3-1. 實驗設計與流程 ............................................................................................. 31 3-2. 實驗儀器設備 ................................................................................................. 33 3-3. 實驗材料及藥品 ............................................................................................. 33 3-4. 實驗基板之製備 ............................................................................................. 33 3-4-1. 平面式基板 ......................................................................................... 38 3-4-2. 微指叉式基板 ..................................................................................... 39 3-5. 化學氣相沉積法(CVD)生長氧化鋅奈米線 .................................................. 41 3-6. 試片表面形貌、元素與微結構分析 ............................................................. 45 3-6-1. 高解析掃描式電子顯微鏡(UR-SEM) ............................................... 45 3-6-2. X射線繞射分析(XRD) ....................................................................... 48 3-6-3. 穿透式電子顯微鏡(TEM) .................................................................. 51 3-6-4. 陰極射線激發放光光譜分析(CL) ..................................................... 52 3-7. 電性量測及氣體感測 ..................................................................................... 54 第四章 結果與討論 .......................................................................................................... 55 4-1. 於平面式基板生長氧化鋅奈米線 ................................................................. 55 4-1-1. 平面式基板上不同介質層對於生長氧化鋅奈米線之影響 ............. 55 4-1-2. 不同氧氬氣體流量比對於生長氧化鋅奈米線之影響 ..................... 59 4-1-3. 不同生長溫度對於生長氧化鋅奈米線之影響 ................................. 66 4-1-4. 不同基板距離對於生長氧化鋅奈米線之影響 ................................. 72 4-1-5. 生長氧化鋅奈米線之生長機制 ......................................................... 76 4-2. 於微指叉式電極基板生長氧化鋅奈米線 ..................................................... 78 4-2-1. 不同晶種層形貌對於生長氧化鋅奈米線之影響 ............................. 78 4-2-2. 不同的放置距離對於側向生長氧化鋅奈米線之影響 ..................... 81 4-2-3. 不同放置位置與角度對於側向生長氧化鋅奈米線之影響 ............. 84 4-3. 氧化鋅奈米線氣體感測器對乙醇氣體感測之特性分析 ............................. 91 4-3-1. 不同操作溫度對感測度之影響 ......................................................... 92 4-3-2. 不同氣體濃度對感測度之影響 ......................................................... 98 4-3-3. 氣體感測器之可靠度測試 ............................................................... 103 第五章 結論 .................................................................................................................... 105 第六章 未來展望 ............................................................................................................ 106 第七章 參考文獻 ............................................................................................................ 107

    1. Y. Chen, D. Bagnall, “ZnO as a novel photonic material for the UV region ”, Mater. Sci. Eng. B.75(2000)190
    2. Z. K. Tang, G. K. L. Wong, P. Yu, “ Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films ”, Appl. Phys. Lett. 72(1998)3270.
    3. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto,” Optically pumped lasing of ZnO at room temperature” Appl. Phys. Lett. 1997, 70, 2230
    4. Su-Shia Lin, J. L. Huang, P. Sajgalik, “The properties of heavily Al-doped ZnO films before and after annealing in the different atmosphere ”, Surf. Coat. Technol. 185(2004)254.
    5. G. Eranna ; B. C. Joshi ; D. P. Runthala ; R. P. Gupta , “Oxide Materials for Development of Integrated Gas Sensors – A Comprehensive Review”, Critical Reviews in Solid State and Materials Sciences, 29:3, 111 – 188, (2004).
    6. Ting-Jen Hsueh and Shoou-Jinn Chang, Cheng-Liang Hsu, Yan-Ru Lin, I.-Cherng Chen,” Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption”, APPLIED PHYSICS LETTERS 91, 053111, 2007
    7. LMLi, C C Li, J Zhang, Z F Du, B S Zou, H C Yu, Y GWang and THWang, “Band gap narrowing and ethanol sensing properties of In-doped ZnO nanowires”, Nanotechnology 18 (2007) 225504 (4pp)
    8. Abu Z. Sadek, Student Member, IEEE, Supab Choopun, Wojtek Wlodarski, Member, IEEE, Samuel J. Ippolito, and Kourosh Kalantar-zadeh, Member, IEEE,” Characterization of ZnO Nanobelt-Based Gas Sensor for H2, NO2, and Hydrocarbon Sensing”, IEEE SENSORS JOURNAL, VOL. 7, NO. 6, JUNE 2007.
    9. Guan Wang, Yuan Ji , Xianrong Huang , Xiaoqing Yang, “Fabrication and Characterization of Polycrystalline WO3 Nanofibers and Their Application for Ammonia Sensing”J. Phys. Chem. B 2006, p. 110,23777-23782 .
    10. Y.W. Heo, D.P. Norton, L.C. Tien, Y. Kwon, B.S. Kang, F. Ren, S.J. Pearton and J.R. LaRoche, “ZnO nanowire growth and devices” Materials Science and Engineering: R: Reports, 47, p.1 (2004).
    11. G.S. Wu, T. Xie, X.Y. Yuan, Y. Li, L. Yang, Y.H. Xiao and L.D. Zhang, “Controlled synthesis of ZnO nanowires or nanotubes via sol gel template process” Solid State Communications, 134, p.485 (2005).
    12. Yongsheng Zhang, Ke Yu, Shixi Ouyang, Ziqiang Zhu, “Patterned growth and field emission of ZnO nanowires “ Materials Letters, 60, p.522 (2006).
    13. Chun Li, Guojio Fang, Fuhai Su, Gouhua Li, Xiaoguang Wu, “Synthesis and photoluminescence properties of vertically aligned ZnO nanorod–nanowall junction arrays on a ZnO-coated silicon substrate” Nanotechnology 17, p.3740 (2006).
    14. Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, P.R. China , “Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications”, Appl. Phys. A 80, 1451–1454 (2005)
    15. Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors”, APPLIED PHYSICS LETTERS VOLUME 85, NUMBER 26 27 DECEMBER 2004.
    16. John F. Conley, Jr._ Lisa Stecker, and Yoshi Ono, “Directed integration of ZnO nanobridge devices on a Si substrate”, APPLIED PHYSICS LETTERS 87, 223114 (2005).
    17. JOHN F. CONLEY, JR.,1,2 LISA STECKER,1 and YOSHI ONO1 ,“Selective Growth and Directed Integration of ZnO Nanobridge Devices on Si Substrates without a Metal Catalyst Using a ZnO Seed Layer”, Journal of ELECTRONIC MATERIALS, Vol. 35, No. 4, 2006.
    18. 陳一誠,"金屬氧化物半導體氣體感測器",材料與社會,第68期,第62~66頁,1992
    19. 曾明漢,"觸媒燃燒型氣體感測器",材料與社會,第68 期,57~61 頁,民國81 年8 月。
    20. H. Inaba, and H. Tagawa, Review Ceria-based solid electrolytes, Solid State Ionics 83, p.1-16, 1996.
    21. 顧志鴻,MOSFET 氣體感測器,材料與社會,第68 期,71~77 頁,民國81 年8 月。
    22. 邱秋燕、周澤川,化學感測器之原理與應用,化工,第40 卷,第3期,120∼133 頁,1993 年。
    23. 蔡嬪嬪、曾明漢,"氣體感測器之簡介、應用及市場",材料與社會,第68期,第50~56,1992。
    24. 邱秋燕,"電流式二氧化硫氣體感測器之研究",國立成功大學化學工程研究所博士論文,1998。
    25. W. J. Fleming, Physical Principles Governing Nonideal Behavior of the Zerconia Oxygen Sensor, J. Electrochem. Soc., 124, p.21-28, 1977.
    26. Winquist, F., “Recent developments in field effect sensors”, Sensors and Actuators, B23, pp. 127-133, 1995.
    27. Hormik, W., “A Novel Structure for Detecting Organic Vapors and Hydrocarbons Based on a Pd-MOS Sensor”, Sensors and Actuators, B1, pp. 35, 1990.
    28. Morita, Y. and Kim, C., “Langmuir Analysis on Hydrogen Gas Response of Palladium-gate FET”, Sensors and Actuators, B33, pp. 96, 1996.
    29. Donald A. Neamen, “Semiconductor Physics and Devices: Basic Principles 3e”, 1997.
    30. P.B.Weisz, Effects of electronic charge transfer between adsorbate and solid on chemsiorption and catalysis , J.Chem.Phys Vol.21 pp.1531 ~1538 (1953).
    31. H.Windischmann and P.Mark, A model for the operation of a thin film SnOx conductance-modulation carbon monoxide sensor, Journal of the electrochemical society Vol.126 No.4 pp.627~633 (1979).
    32. K. M. Sancier, ESR evidence of CO oxidation by more than one oxygen species sorbed on ZnO, Journal of Catalysis Vol.9 pp. 331~335 (1967).
    33. D. Kohl, Surface processes in the detection of reducing gases with SnO2-based devices, Sensors and Actuators Vol.18 pp.71~113 (1989)
    34. S. C. Chang, Thin-film semiconductor NOx sensor, IEEE Transactions on Electron Devices Vol. ED-26, No. 12 pp. 1875~1880 (1979).
    35. G. Heiland, “Homogeneous semiconducting gas sensors”, Sensors and Actuators Vol.2 pp. 343~361 (1982).
    36. D.P. Norton, Y.W. HeO, M.P. lvill, K.lp, S.J. Pearton, M.F.Chisholm, and T. Steiner, “ZnO: growth, doping and processing”, Materialstodayn, ISSN:1369 7021 (2004)
    37. P. M. Verghese et al. , “Surface textured zinc oxide films ”, J. Mater. Res. 14(1999) 3.
    38. Z. L. Wang, “Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing”, Appl. Phys. A 88, 7–15 (2007).
    39. W. S. Hu, Z. G. Liu, R. X. Wu, Y. F. Chen, W. Ji, T. Yu and D. Feng.“Preparation of piezoelectric-coefficient modulated multilayer film ZnO/Al2O3 and its ultrahigh frequency resonance”, Appl. Phys. Lett. 71(1997)548.
    40. D.R. Patil , L.A. Patil , P.P. Patil, “Cr2O3-activated ZnO thick film resistors for ammonia gas sensing operable at room temperature”, Sensors and Actuators B 126 (2007) 368–374.
    41. M.S. Wagh, G.H. Jain, D.R. Patil, S.A. Patil, L.A. Patil, Modified zinc oxide thick film resistors as NH3 gas sensor, Sensor. Actuator B 115 (2006) 128–133.
    42. J. Wollenstein, J.A. Plaza, C. Cane, Y. Min, H. Bottner, H.L. Tuller, A novel single chip thin film metal oxide array, Sensor. Actuator B 93 (2003) 350–355.
    43. S. Mridha, D. Basak, Investigation of a p-CuO/n-ZnO thin film heterojunction for H2 gas sensor applications, Semicond. Sci. Technol. 21 (2006) 928–932.
    44. G.G. Huang, C.T.Wang, H.T. Tang,Y.S. Huang, J.Yang, ZnO nanoparticlemodified infrared internal reflection elements for selective detection of volatile organic compounds, Anal. Chem. 78 (2006) 2397–2404.
    45. Z.P. Sun, L. Liu, L. Zhang, D.Z. Jia, Rapid synthesis of ZnO nanorods by one-step, room-temperature, solid-state reaction and their gas sensing properties, Nanotechnology 17 (2006) 2266–2270.
    46. 莊達人, ”VLSI 製造技術”, 高利圖書股份有限公司,1995 年
    47. J.J. Wu and S-C. Liu, “Low Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition”, Adv. Mater. 14, 215 (2002).
    48. Y-K. Tseng, I-N. Lin, K-S. Liu, T-S. Lin, and I-C. Chen, J. Mater. “Low-temperature growth of ZnO nanowires”, Res. 18, 718 (2003).
    49. Y. Zhao and Y. U. Kwon, “Templateless Hydrothermal Synthesis of Aligned ZnO Nanorods”, Chem. Lett. 2004, 33, 1578.
    50. Pu-Xian Gao, Jin Liu, Brent A. Buchine, Benjamin Weintraub, and Z. L. Wang”, Bridged ZnO nanowires across trenched electrodes”, APPLIED PHYSICS LETTERS 91, 142108 (2007)
    51. H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu, "Periodic array of uniform ZnO nanorods by second-order self-assembly", Appl. Phys. Lett. 2004, 84, 3376.
    52. R. S. Wagner, and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth”, Appl. Phys. Lett. 4 89 (1946)
    53. M.K. Sunkara, S. Sharma, R. Miranda, G. Lian, and E.C. Dickey, “Bulk Synthesis of Silicon Nanowires using a Low Temperature Vapor-Liquid-Solid Method”, Appl. Phys. Lett., 79, 1546 (2001).
    54. Y. Wu, P. Yang, “Germanium nanowire growth via simple vapor transport”, Chem. Mater. 12, 605 (2000).
    55. Zhi CY, Bai XD, and Wang EG, “Synthesis and field-electron- emission behavior of aligned GaAs nanowires.”, Appl. Phys. Lett., 2005, 86, 213108
    56. Sang-Kwon Lee, 1, Heon-Jin Choi, Peter Pauzauskie, Peidong Yang, Nam-Kyu Cho, Hyo-Derk Park, Eun-Kyung Suh, Kee-Young Lim, and Hyung-Jae Lee, “Gallium nitride nanowires with a metal initiated metal-organic chemical vapor deposition (MOCVD) approach”, Phys. Stat. Sol. (b) 241. 2775 (2004).
    57. J.Q. Hu, Q. Li, N.B. Wong, C.S. Lee, and S.T. Lee, “Synthesis of uniform hexagonal prismatic ZnO whiskers”, Chem. Mater., 141216-1219 (2002).
    58. 薛丁仁,"氧化鋅奈米線成長與感測器元件之應用",國立成功大學,微電子工程研究所博士論文,2008年
    59. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si nanowires grown from silicon oxide”, Chem. Phys. Lett. 299, 237 (1999).
    60. Yung-Kuan Tseng, I-Nan Lin, Kuo-Shung Liu, Tzer-Shen Lin and I-Cherng Chen, “Low-temperature growth of ZnO nanowires”, J. Mater. Res., Vol. 18, No. 3, Mar 2003
    61. Peidong Yang, Haoquan Yan, Samuel Mao, Richard Russo, Justin Johnson, Richard Saykally, Nathan Morris, Johnny Pham, Rongrui He, and Heon-Jin Choi, “Controlled Growth of ZnO Nanowires and Their Optical Properties”, Adv. Funct. Mater. 2002, 12, No5, May.
    62. Ting-Jen Hsueh , Cheng-Liang Hsu, Shoou-Jinn Chang, I-Cherng Chen, “Laterally grown ZnO nanowire ethanol gas sensors”, Sensors and Actuators B 126 (2007) 473–477.
    63. Cheng-Liang Hsu, Shoou-Jinn Chang, Hui-Chuan Hung, Yan-Ru Lin, Tsung-Heng Lu, Yung-Kuan Tseng, and I-Cherng Chen, “Selective growth of vertical ZnO nanowires on ZnO:Ga/Si3N4 /SiO2/Si Templates”, J. Vac. Sci. Technol. B 23„6 ,Nov/Dec 2005.
    64. Jae Young Park , Young Su Yun , Yong Sung Hong , Hwangyou Oh , Ju-Jin Kim , Sang Sub Kim , “Synthesis and electrical properties of aligned ZnO nanocolumns”, Composites: Part B 37 (2006) 408–412.
    65. Junya Suehiro1, Nobutaka Nakagawa, Shin-ichiro Hidaka, Makoto Ueda, Kiminobu Imasaka,Mitsuhiro Higashihata, Tatsuo Okada andMasanori Hara,” Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor”, INSTITUTE OF PHYSICS PUBLISHING, Nanotechnology 17 (2006) 2567–2573.
    66. L. Liao, H. B. Lu, J. C. Li, C. Liu, and D. J. Fu, Y. L. Liu, ” The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation”, APPLIED PHYSICS LETTERS 91, 173110 (2007).
    67. John F. Conley, Jr._ Lisa Stecker, and Yoshi Ono, “Directed integration of ZnO nanobridge devices on a Si substrate”, APPLIED PHYSICS LETTERS 87, 223114 (2005).
    68. Jong Soo Lee, M. Saif Islam and Sangtae Kim, “Direct Formation of Catalyst-Free ZnO Nanobridge Devices on an Etched Si Substrate Using a Thermal Evaporation Method”, NANO LETTERS (2006) Vol. 6, No. 7, 1487-1490.
    69. Yung-Kuan Tseng, Hsu-Cheng Hsu and Wen-Feng Hsieh, Kuo-Shung Liu, I-Cherng Chena), “Two-step oxygen injection process for growing ZnO nanorods”. J. Mater. Res., Vol. 18, No. 12, Dec 2003.
    70. Ting-Jen Hsueh a, Yi-Wen Chenb, Shoou-Jinn Changa, Sea-Fue Wang b, Cheng-Liang Hsuc, Yan-Ru Lin d, Tzer-Shen Lin d, I-Cherng Chene, “ZnO nanowire-based CO sensors prepared on patterned ZnO:Ga/SiO2/Si templates”, Sensors and Actuators B 125 (2007) 498–503.
    71. K.Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A.Voigt, B. E. Gnade, J. Appl. Phys. 1996, 79 (10), 7983
    72. M.-W. Ahn,1 K.-S. Park,1 J.-H. Heo,1 J.-G. Park,1 D.-W. Kim,1 K. J. Choi,1,a_ J.-H. Lee,2 and S.-H. Hong3, “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor”, APPLIED PHYSICS LETTERS 93, 263103 (2008)
    73. Q. Wan, Q. H. Li, Y. J. Chen, and T. H. Wanga), X. L. He and J. P. Li, C. L. Lin,” Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors”, APPLIED PHYSICS LETTERS VOLUME 84, NUMBER 18, 3 MAY 2004.
    74. X. Y. Xue, Y. J. Chen, Y. G. Wang, and T. H. Wanga!, “Synthesis and ethanol sensing properties of ZnSnO3 nanowires”, APPLIED PHYSICS LETTERS 86, 233101 s2005d
    75. J. F. Mcaleer, P. T. Moseley, J. O. W. Norris , D. E.Williams ,” Tin dioxide gas sensors. Part 1.—Aspects of the surface chemistry revealed by electrical conductance variations ”Journal of the Chemical Society. Vol. 83, pp. 1323-1346(1987)

    下載圖示 校內:2019-08-21公開
    校外:2019-08-21公開
    QR CODE