簡易檢索 / 詳目顯示

研究生: 蔡宇翔
Tsai, Yu-Hsiang
論文名稱: 鑭鍶錳氧之特異磁結構與偏置耦合調控與解析
Manipulation of Unconventional Magnetic Textures and Exchange Bias of La1-xSrxMnO3 Heterostructures
指導教授: 楊展其
Yang, Jan-Chi
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 99
中文關鍵詞: 鑭鍶錳氧特異磁結構偏置耦合獨力支撐系統
外文關鍵詞: LSMO, LSMRO, Exchange bias, Magnetic Textures, Freestanding
相關次數: 點閱:102下載:40
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分別探討摻雜過渡金屬釕Ru的La0.7Sr0.3Mn0.9Ru0.1O3(LSMRO)和未摻雜的鑭鍶錳氧La0.7Sr0.3MnO3( LSMO)的異質結構在磁性條紋調控和偏置耦合效應 Exchaged Bias)上的表現差異。LSMO因其豐富的磁性和電子組態使其在磁性材料研究中具有重要地位(是現現熱門研研究的材料之 (。摻入Ru元素後是將使LSMO的自旋軌道耦合 SOC)增強是預期會對其磁性質產生顯著影響。
    通過施加不同大小與方向的磁場及電流來操控異質結構中的磁性條紋是並比較在不同參雜條件下的偏置耦合效應。其中我們利用自由支撐技術(Freestanding, FS)是以減少基板引起的應變效應是從而獲得更真實的磁性質是這項技術經常運用在開發高性能的磁性記憶元件與高靈活性的電子元件。實驗方法包括使用脈衝雷射沉積(Pulsed Laser Deposition)製備高品質的薄膜、自由支撐技術的應用以及針對整體磁性的測量(VSM, XMCD)和量測表面磁性條紋的掃描探針顯微鏡(SPM)。
    研究結果顯示是摻入Ru後的LSMO薄膜在磁性條紋調控上表現出更大的穩定性。然而(是在未摻入Ru的LSMO中展示了較強的偏置耦合效應是這結果顯示出LSMO與Ru所增強的自旋軌道耦合時會產生自旋受挫(Spin frustration)。這些發現不僅提供了關於磁性材料設計和應用的新見解是還為新穎的元件開發提供了理論支持和實驗依據。

    In the past decades, Lanthanum strontium manganite (La1-xSrxMnO3, LSMO) has been a well-known material because of their unique physical properties and potential of revealing interesting new phenomena. In this work, we investigated the properties of LSMO and its Ru-doped variant, LSMRO, with particular emphasis on the modulation of magnetic textures and exchange bias (EB) inherent in their heterostructures. The high quality thin films have been fabricated successfully via Pulsed Laser Deposition (PLD). Our work focused on the influence of Ruthenium doping, geometrical limitations, and the application of external magnetic fields on the regulation of magnetic domains, employing Magnetic Force Microscopy (MFM) and Photoemission Electron Microscopy (PEEM).Furthermore, we investigated the effects of Ruthenium (Ru) doping and freestanding techniques on the exchange bias (EB) strength through the application of Vibrating Sample Magnetometry (VSM) and X-ray Magnetic Circular Dichroism (XMCD).
    Our research demonstrates that the incorporation of Ru doping significantly augments Spin-Orbit Coupling (SOC), resulting in the stabilization of magnetic domains; however, it concurrently induces spin frustration, thereby diminishing the exchange bias (EB) strength. This investigation offers valuable perspectives on the magnetic characteristics of LSMRO from various analytical viewpoints.

    摘要 2 致謝 19 總目錄 21 圖目錄 24 第一章 緒論 27 第二章 文獻回顧 29 2.1 偏置耦合 (Exchange Bias,EB) 29 2.2 鑭鍶錳氧 (LSMO) 31 2.3 獨力支撐系統 (Freestanding) 35 2.4 莫爾圖案 (Moiré Pattern) 37 2.5 退火 (Annealing) 38 2.6 自旋軌道耦合 (Spin orbital coupling) 39 2.7 自旋挫折 (Spin frustration) 42 第三章 實驗原理與方法 44 3.1 脈衝雷射沉積 (Pulsed Laser Deposition, PLD) 44 3.2 掃描式探針顯微術 (Scanning Probe Microscopy, SPM) 46 3.2.1 原子力顯微鏡 (Atomic Force Microscope, AFM) 47 3.2.2 磁力顯微鏡 (MFM) 48 3.3 穿透式電子顯微鏡 (TEM) 50 3.4 同步輻射 (Synchrotron Radiation) 51 3.4.1 X-ray Diffraction (XRD) 51 3.4.2 ϑ - 2ϑ Scan 52 3.4.3 L - Scan 53 3.4.4 Φ-scan 53 3.4.5 X-ray reflectivity(XRR) 54 3.4.6 倒晶格空間圖譜 (Reciprocal space mapping, RSM) 55 3.4.7 X-ray Absorption Spectroscopy(XAS) 55 3.5 震動樣品磁化儀(Vibrating Sample Magnetometer, VSM) 58 3.6 光電電子顯微鏡 (Photo-Emission Electron Microscope, PEEM) 60 第四章 實驗結果與討論 62 4.1 LSMO/LSMRO 磁性紋理調控 62 4.2 LSMO/LSMRO 偏置耦合分析 78 4.3 LSMO 旋轉轉移效應中的偏置耦合分析 89 第五章 結論 93 參考文獻 95

    1. Jiang, W., et al., Magnetism. Blowing magnetic skyrmion bubbles. Science, 2015. 349(6245): p. 283-6.
    2. Yu, X., et al., Variation of Topology in Magnetic Bubbles in a Colossal Magnetoresistive Manganite. Adv Mater, 2017. 29(3).
    3. Liu, C., et al., Current-controlled propagation of spin waves in antiparallel, coupled domains. Nat Nanotechnol, 2019. 14(7): p. 691-697.
    4. Tokura, Y., et al., Origins of colossal magnetoresistance in perovskite‐type manganese oxides (invited). Journal of Applied Physics, 1996. 79(8): p. 5288-5291.
    5. Greculeasa, S.G., et al., Influence of Thickness on the Magnetic and Magnetotransport Properties of Epitaxial La0.7Sr0.3MnO3 Films Deposited on STO (0 0 1). Nanomaterials, 2021. 11(12): p. 3389.
    6. Moshnyaga, V., Metal-Insulator Transition and Magnetoresistance in Manganite Thin Films: Lattice Strain and Disorder Effects, in Frontiers in Magnetic Materials. 2005, Springer. p. 415-458.
    7. Sethu, K.K.V., Spin orbit torques in magnetic materials. vol. Belgium, 2017.
    8. Chiabrera, F.M., et al., Freestanding Perovskite Oxide Films: Synthesis, Challenges, and Properties. Annalen Der Physik, 2022. 534(9): p. 20.
    9. Pesquera, D., et al., Freestanding complex-oxide membranes. Journal of Physics: Condensed Matter, 2022. 34(38): p. 383001.
    10. Martin, L.W., et al., Room temperature exchange bias and spin valves based on BiFeO3∕SrRuO3∕SrTiO3∕Si (001) heterostructures. Applied Physics Letters, 2007. 91(17).
    11. Nogués, J. and I.K. Schuller, Exchange bias. Journal of Magnetism and Magnetic Materials, 1999. 192(2): p. 203-232.
    12. Schmid, I. The role of uncompensated spins in exchange biased systems. 2008.
    13. Wu, S.M., et al., Reversible electric control of exchange bias in a multiferroic field-effect device. Nat Mater, 2010. 9(9): p. 756-61.
    14. Cui, B., et al., Strain engineering induced interfacial self-assembly and intrinsic exchange bias in a manganite perovskite film. Scientific reports, 2013. 3(1): p. 2542.
    15. Huang, J., et al., Exchange bias in a La0.67Sr0.33MnO3/NiO heterointerface integrated on a flexible mica substrate. ACS Applied Materials & Interfaces, 2020. 12(35): p. 39920-39925.
    16. Jin, C., et al., Exchange bias in flexible freestanding La0.7Sr0.3MnO3/BiFeO3 membranes. Applied Physics Letters, 2020. 117(25).
    17. Prajapat, C.L., et al., Interface-induced magnetization and exchange bias in LSMO/BFO multiferroic heterostructures. ACS Applied Electronic Materials, 2020. 2(8): p. 2629-2637.
    18. Rahman, M.S., et al., Integration of BiFeO3/La0.7Sr0.3MnO3 heterostructures with III–V semiconductors for low-power non-volatile memory and multiferroic field effect transistors. Journal of Materials Chemistry C, 2016. 4(43): p. 10386-10394.
    19. Vafaee, M., et al., The effect of interface roughness on exchange bias in La0.7Sr0.3MnO3–BiFeO3 heterostructures. Applied Physics Letters, 2016. 108(7).
    20. Zhang, J., T. Su, and J. Ma, Strain-Induced Robust Exchange Bias Effect in Epitaxial La0.7Sr0.3MnO3/LaFeO3 Bilayers. Molecules, 2024. 29(14): p. 3244.
    21. Liu, M.F., et al., Unusual ferromagnetism enhancement in ferromagnetically optimal manganite La0.7-yCa0.3+yMn1-yRuyO3 (0</=y<0.3): the role of Mn-Ru t2g super-exchange. Sci Rep, 2015. 5: p. 9922.
    22. Hemberger, J., et al., Structural, magnetic, and electrical properties of single-crystalline La1−xSrxMnO3(0.4<x<0.85). Physical Review B, 2002. 66(9): p. 094410.
    23. Li, T., et al., Annealing effect on the structural and magnetic properties of La0.7Sr0.3MnO3 films. Journal of applied physics, 2005. 98(12).
    24. Mathews, M., Structural and magnetic properties of epitaxial La0.67Sr0.33MnO3 films and nanostructures. 2007.
    25. Monsen, Å., et al., Thickness dependence of dynamic and static magnetic properties of pulsed laser deposited La0.7Sr0.3MnO3 films on SrTiO3 (001). Journal of magnetism and magnetic materials, 2014. 369: p. 197-204.
    26. Pesquera, D., et al., Strain-driven orbital and magnetic orders and phase separation in epitaxial half-doped manganite films for tunneling devices. Physical Review Applied, 2016. 6(3): p. 034004.
    27. You, L., et al., Origin of the uniaxial magnetic anisotropy in La0.7Sr0.3MnO3 on stripe-domain BiFeO3. Physical Review B—Condensed Matter and Materials Physics, 2013. 88(18): p. 184426.
    28. Yuan, W., et al., Epitaxial growth and properties of La0.7Sr0.3MnO3 thin films with micrometer wide atomic terraces. Applied Physics Letters, 2015. 107(2).
    29. Zhang, B., et al., Control of magnetic anisotropy by orbital hybridization with charge transfer in (La0.67Sr0.33MnO3)n / (SrTiO3)n superlattice. NPG Asia Materials, 2018. 10(9): p. 931-942.
    30. Hua, E.D., et al., Ru-Doping-Induced Spin Frustration and Enhancement of the Room-Temperature Anomalous Hall Effect in La2/3Sr1/3MnO3 Films. Advanced Materials, 2022. 34(47): p. 9.
    31. Krishnan, K.M. and H. Ju, Role of stoichiometry and structure in colossal magnetoresistive La1−xSrxMn1−yRuyO3. Physical Review B, 1999. 60(21): p. 14793.
    32. Nakamura, M., et al., Emergence of Topological Hall Effect in Half-Metallic Manganite Thin Films by Tuning Perpendicular Magnetic Anisotropy. Journal of the Physical Society of Japan, 2018. 87(7): p. 8.
    33. Ishii, Y., et al., Perovskite manganite magnetic tunnel junctions with enhanced coercivity contrast. Applied Physics Letters, 2005. 87(2).
    34. Wang, L., et al., Effects of Ru substitution for Mn on La0.7Sr0.3MnO3 perovskites. Journal of Applied Physics, 2007. 102(2).
    35. Haghiri-Gosnet, A., et al., Microstructure and magnetic properties of strained La0.7Sr0.3MnO3 thin films. Journal of Applied Physics, 2000. 88(7): p. 4257-4264.
    36. Huang, J., et al., Freestanding La0.7Sr0.3MnO3:NiO vertically aligned nanocomposite thin films for flexible perpendicular interfacial exchange coupling. Materials Research Letters, 2022. 10(4): p. 287-294.
    37. Zhou, W., et al., Synthesis of freestanding perovskite oxide thin films by using brownmillerite SrCoO2.5 as a sacrificial layer. Applied Physics Letters, 2023. 122(6).
    38. Bakaul, S.R., et al., Single crystal functional oxides on silicon. Nature communications, 2016. 7(1): p. 10547.
    39. Yang, G., et al., Twisted Integration of Complex Oxide Magnetoelectric Heterostructures via Water-Etching and Transfer Process. Nano-Micro Letters, 2024. 16(1): p. 19.
    40. Du, Y., et al., Effects of annealing procedures on the structural and magnetic properties of epitaxial La0.7Sr0.3MnO3 films. Journal of magnetism and magnetic materials, 2006. 297(2): p. 88-92.
    41. Sahu, D., et al., Annealing effect on the properties of La0.7Sr0.3MnO3 thin film grown on Si substrates by DC sputtering. Physica B: Condensed Matter, 2007. 396(1-2): p. 75-80.
    42. Mila, F., Frustrated spin systems. Many-Body Physics: From Kondo to Hubbard, 2015. 5.
    43. Basaran, A.C., et al., Emergence of exchange bias and giant coercive field enhancement by internal magnetic frustration in La0.67Sr0.33MnO3 thin films. Journal of Magnetism and Magnetic Materials, 2022. 550: p. 169077.
    44. Howland, R. and L. Benatar, Apractical GUIDE TO SCANNING PROBE MICROSCOPY. 1993.
    45. Balerna, A. and S. Mobilio, Introduction to synchrotron radiation, in Synchrotron Radiation: Basics, Methods and Applications. 2014, Springer. p. 3-28.
    46. Ameh, E., A review of basic crystallography and x-ray diffraction applications. The international journal of advanced manufacturing technology, 2019. 105(7): p. 3289-3302.
    47. Side, L., Recent trends in X-ray fluorescence spectrometry: Precise investigation of nanomaterials. Spectroscopy Europe, 2018. 30(1).
    48. Yu, P., et al., Interface Ferromagnetism and Orbital Reconstruction in BiFeO3-La0.7Sr0.3MnO3 Heterostructures. Physical Review Letters, 2010. 105(2): p. 027201.
    49. Dodrill, B. and J.R. Lindemuth, Vibrating sample magnetometry. Magnetic measurement techniques for materials characterization, 2021: p. 15-37.
    50. Feng, J. and A. Scholl, Photoemission electron microscopy. Springer Handbook of Microscopy, 2019: p. 537-564.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE