| 研究生: |
洪羽屏 Hong, Yu-Ping |
|---|---|
| 論文名稱: |
以次世代定序技術分析多重抗藥性沙門氏菌菌株BL10之內生性質體 Next generation sequencing analysis of cryptic plasmids from a multi-drug resistant Salmonella enterica serovar Typhimurium strain BL10 |
| 指導教授: |
黃一修
Huang, I-Hsiu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 非傷寒沙門氏菌 、食媒性疾病 、多重抗藥性 、次世代定序技術 、防疫一體 |
| 外文關鍵詞: | Non-typhoid Salmonella (NTS), food-borne disease, multiple drug resistant, next generation sequencing (NGS), One Health |
| 相關次數: | 點閱:96 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非傷寒沙門氏菌 (Non-typhoid Salmonella, NTS) 不僅為人畜共通傳染病,也是重要的食媒性疾病。人類常由於飲食不潔或生熟食交叉汙染而感染沙門氏菌,造成腹痛、腹瀉等腸胃道症狀。隨著抗生藥物的使用,抗藥菌株的演化與散佈,多重抗藥性的菌株已造成人類公共衛生的一大隱憂。國內過去在動物方面抗藥性的研究相對不足,為了更清楚釐清動物與人抗藥性散播的關係,本研究利用次世代定序技術 (Next Generation Sequencing, NGS) 將動物來源多重抗藥性Salmonella enterica subsp. enterica serotype Typhimurium (S. Typhimurium) 菌株BL10進行全基因解序,發現BL10共攜帶有22種抗藥基因,而且這些抗藥基因全位於4個質體。此外也利用BL10為參考菌株,比較4株其他動物及人類來源的S. Typhimurium菌株之抗藥基因與攜帶基因之質體,發現5株菌株分享共同的抗藥基因與4個質體,顯示人畜來源S. Typhimurium菌株間之流病關聯性。若無法有效地管制抗生素的使用,越來越嚴重的抗藥性問題會對人類健康及經濟造成嚴重威脅,唯有從環境、動物及人類防疫一體的角度進行抗生素使用的管制,才能確保大眾的健康。
Non-typhoid Salmonella (NTS) is not only a zoonotic disease, but also an important food-borne disease, usually causing diarrhea, gastroenteritis. With the spread of drug resistance, multiple drug resistant strains have caused a major public health concerns. In order to clarify the relationship between animal and human resistance distribution, we used next generation sequencing (NGS) to carry out the whole genome sequence of a multiple drug resistant strain BL10, and determined that the genome of BL10 have more than 20 drug-resistant genes, all of which located on plasmids. In addition, we also use BL10 as reference strain to analyze similar genes from four other multi-drug resistant strains. We found that all five strains have the constant resistance genes and plasmids, showing that the drug resistance genes might have spread between humans and animals. Results here suggest that if we do not effectively control the use of antibiotics, drug resistance will become a great threat to human health and the economy. Only from the perspective of “One Health” (environmental, animal and human) to control antibiotics, will we able to ensure the health of public.
1 Popoff, M. Y., Bockemuhl, J. & Gheesling, L. L. Supplement 2001 (no. 45) to the Kauffmann-White scheme. Res Microbiol 154, 173-174, doi:10.1016/S0923-2508(03)00025-1 (2003).
2 Reeves, M. W., Evins, G. M., Heiba, A. A., Plikaytis, B. D. & Farmer, J. J., 3rd. Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol 27, 313-320 (1989).
3 Brenner, F. W., Villar, R. G., Angulo, F. J., Tauxe, R. & Swaminathan, B. Salmonella nomenclature. J Clin Microbiol 38, 2465-2467 (2000).
4 Guibourdenche, M. et al. Supplement 2003-2007 (No. 47) to the White-Kauffmann-Le Minor scheme. Res Microbiol 161, 26-29, doi:10.1016/j.resmic.2009.10.002 (2010).
5 Bhan, M. K., Bahl, R. & Bhatnagar, S. Typhoid and paratyphoid fever. Lancet 366, 749-762, doi:10.1016/S0140-6736(05)67181-4 (2005).
6 Connor, B. A. & Schwartz, E. Typhoid and paratyphoid fever in travellers. Lancet Infect Dis 5, 623-628, doi:10.1016/S1473-3099(05)70239-5 (2005).
7 Hohmann, E. L. Nontyphoidal salmonellosis. Clin Infect Dis 32, 263-269, doi:10.1086/318457 (2001).
8 Majowicz, S. E. et al. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50, 882-889, doi:10.1086/650733 (2010).
9 Galanis, E. et al. Web-based surveillance and global Salmonella distribution, 2000-2002. Emerg Infect Dis 12, 381-388, doi:10.3201/eid1205.050854 (2006).
10 Lynch, M., Painter, J., Woodruff, R. & Braden, C. Surveillance for foodborne-disease outbreaks--United States, 1998-2002. Morbidity and mortality weekly report. Surveillance summaries (Washington, D.C. : 2002) 55, 1-42 (2006).
11 Fleming, A. Classics in infectious diseases: on the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae by Alexander Fleming, Reprinted from the British Journal of Experimental Pathology 10:226-236, 1929. Rev Infect Dis 2, 129-139 (1980).
12 Neu, H. C. The crisis in antibiotic resistance. Science 257, 1064-1073 (1992).
13 Spratt, B. G. Resistance to antibiotics mediated by target alterations. Science 264, 388-393 (1994).
14 McDermott, P. F., Walker, R. D. & White, D. G. Antimicrobials: modes of action and mechanisms of resistance. Int J Toxicol 22, 135-143, doi:10.1080/10915810305089 (2003).
15 Magnet, S. & Blanchard, J. S. Molecular insights into aminoglycoside action and resistance. Chem Rev 105, 477-498, doi:10.1021/cr0301088 (2005).
16 Wright, G. D. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev 57, 1451-1470, doi:10.1016/j.addr.2005.04.002 (2005).
17 Ochiai, K. Y., T; Kimura, K; Sawada, O. Inheritance of drug resistance (and its transfer) between Shigella strains and Between Shigella and E.coli strains. Hihon Fiji Simper (in Japanese) 1861 (1959).
18 Vakulenko, S. B. & Mobashery, S. Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16, 430-450 (2003).
19 Moore, R. A., DeShazer, D., Reckseidler, S., Weissman, A. & Woods, D. E. Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother 43, 465-470 (1999).
20 Hancock, R. E. Aminoglycoside uptake and mode of action-with special reference to streptomycin and gentamicin. II. Effects of aminoglycosides on cells. J Antimicrob Chemother 8, 429-445 (1981).
21 Taber, H. W., Mueller, J. P., Miller, P. F. & Arrow, A. S. Bacterial uptake of aminoglycoside antibiotics. Microbiol Rev 51, 439-457 (1987).
22 Poehlsgaard, J. & Douthwaite, S. The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol 3, 870-881, doi:10.1038/nrmicro1265 (2005).
23 Shaw, K. J., Rather, P. N., Hare, R. S. & Miller, G. H. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57, 138-163 (1993).
24 Bush, K. Characterization of beta-lactamases. Antimicrob Agents Chemother 33, 259-263 (1989).
25 Queenan, A. M. & Bush, K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 20, 440-458, table of contents, doi:10.1128/CMR.00001-07 (2007).
26 Williams, J. D. Classification of cephalosporins. Drugs 34 Suppl 2, 15-22 (1987).
27 Ambler, R. P. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 289, 321-331 (1980).
28 Bush, K. & Jacoby, G. A. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 54, 969-976, doi:10.1128/AAC.01009-09 (2010).
29 Bradford, P. A. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14, 933-951, table of contents, doi:10.1128/CMR.14.4.933-951.2001 (2001).
30 Schwarz, S., Kehrenberg, C., Doublet, B. & Cloeckaert, A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28, 519-542, doi:10.1016/j.femsre.2004.04.001 (2004).
31 Murray, I. A. & Shaw, W. V. O-Acetyltransferases for chloramphenicol and other natural products. Antimicrob Agents Chemother 41, 1-6 (1997).
32 Gao, Y. Glycopeptide antibiotics and development of inhibitors to overcome vancomycin resistance. Nat Prod Rep 19, 100-107 (2002).
33 Klare, I., Konstabel, C., Badstubner, D., Werner, G. & Witte, W. Occurrence and spread of antibiotic resistances in Enterococcus faecium. Int J Food Microbiol 88, 269-290 (2003).
34 Leclercq, R., Derlot, E., Duval, J. & Courvalin, P. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 319, 157-161, doi:10.1056/NEJM198807213190307 (1988).
35 Johnson, A. P., Uttley, A. H., Woodford, N. & George, R. C. Resistance to vancomycin and teicoplanin: an emerging clinical problem. Clin Microbiol Rev 3, 280-291 (1990).
36 Weisblum, B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 39, 577-585 (1995).
37 Roberts, M. C. Resistance to tetracycline, macrolide-lincosamide-streptogramin, trimethoprim, and sulfonamide drug classes. Mol Biotechnol 20, 261-283, doi:10.1385/MB:20:3:261 (2002).
38 Roberts, M. C. et al. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother 43, 2823-2830 (1999).
39 Roberts, M. C. Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett 282, 147-159, doi:10.1111/j.1574-6968.2008.01145.x (2008).
40 Hooper, D. C. Quinolone mode of action. Drugs 49 Suppl 2, 10-15 (1995).
41 Hooper, D. C. Mechanisms of action and resistance of older and newer fluoroquinolones. Clin Infect Dis 31 Suppl 2, S24-28, doi:10.1086/314056 (2000).
42 Robicsek, A., Jacoby, G. A. & Hooper, D. C. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 6, 629-640, doi:10.1016/S1473-3099(06)70599-0 (2006).
43 Martinez-Martinez, L., Pascual, A. & Jacoby, G. A. Quinolone resistance from a transferable plasmid. Lancet 351, 797-799, doi:10.1016/S0140-6736(97)07322-4 (1998).
44 Robicsek, A. et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12, 83-88, doi:10.1038/nm1347 (2006).
45 Yamane, K. et al. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother 51, 3354-3360, doi:10.1128/AAC.00339-07 (2007).
46 Tschape, H. et al. Plasmid-borne streptothricin resistance in gram-negative bacteria. Plasmid 12, 189-196 (1984).
47 Speer, B. S., Shoemaker, N. B. & Salyers, A. A. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin Microbiol Rev 5, 387-399 (1992).
48 Roberts, M. C. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 19, 1-24 (1996).
49 Roberts, M. C. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245, 195-203, doi:10.1016/j.femsle.2005.02.034 (2005).
50 Skold, O. Resistance to trimethoprim and sulfonamides. Vet Res 32, 261-273, doi:10.1051/vetres:2001123 (2001).
51 Huovinen, P. Trimethoprim resistance. Antimicrob Agents Chemother 31, 1451-1456 (1987).
52 Skold, O. Sulfonamide resistance: mechanisms and trends. Drug Resist Updat 3, 155-160, doi:10.1054/drup.2000.0146 (2000).
53 Huovinen, P., Sundstrom, L., Swedberg, G. & Skold, O. Trimethoprim and sulfonamide resistance. Antimicrob Agents Chemother 39, 279-289 (1995).
54 Howell, E. E. Searching sequence space: two different approaches to dihydrofolate reductase catalysis. Chembiochem 6, 590-600, doi:10.1002/cbic.200400237 (2005).
55 Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737-738 (1953).
56 Sanger, F. et al. Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265, 687-695 (1977).
57 Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463-5467 (1977).
58 Barba, M., Czosnek, H. & Hadidi, A. Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 6, 106-136, doi:10.3390/v6010106 (2014).
59 Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17, 333-351, doi:10.1038/nrg.2016.49 (2016).
60 Metzker, M. L. Sequencing technologies - the next generation. Nat Rev Genet 11, 31-46, doi:10.1038/nrg2626 (2010).
61 Ju, J. et al. Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc Natl Acad Sci U S A 103, 19635-19640, doi:10.1073/pnas.0609513103 (2006).
62 Guo, J. et al. Four-color DNA sequencing with 3'-O-modified nucleotide reversible terminators and chemically cleavable fluorescent dideoxynucleotides. Proc Natl Acad Sci U S A 105, 9145-9150, doi:10.1073/pnas.0804023105 (2008).
63 Levene, M. J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682-686, doi:10.1126/science.1079700 (2003).
64 Chiu, C. H. et al. The emergence in Taiwan of fluoroquinolone resistance in Salmonella enterica serotype choleraesuis. N Engl J Med 346, 413-419, doi:10.1056/NEJMoa012261 (2002).
65 Murti, B. R., Rajyalakshmi, K. & Bhaskaran, C. S. Resistance of Salmonella typhi to chloramphenicol. I. A preliminary report. J Clin Pathol 15, 544-551 (1962).
66 Helms, M., Ethelberg, S., Molbak, K. & Group, D. T. S. International Salmonella Typhimurium DT104 infections, 1992-2001. Emerg Infect Dis 11, 859-867, doi:10.3201/eid1106.041017 (2005).
67 Torpdahl, M. et al. Human isolates of Salmonella enterica serovar Typhimurium from Taiwan displayed significantly higher levels of antimicrobial resistance than those from Denmark. Int J Food Microbiol 161, 69-75, doi:10.1016/j.ijfoodmicro.2012.11.022 (2013).
68 Kuo, H. C. et al. An association of genotypes and antimicrobial resistance patterns among Salmonella isolates from pigs and humans in Taiwan. PLoS One 9, e95772, doi:10.1371/journal.pone.0095772 (2014).
69 Institute(CLSI), C. a. L. S. in CLSI document M100-S23. (Wayne, PA, 2013).
70 Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67, 2640-2644, doi:10.1093/jac/dks261 (2012).
71 Carattoli, A. et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58, 3895-3903, doi:10.1128/AAC.02412-14 (2014).
72 Oliva, M. et al. A novel group of IncQ1 plasmids conferring multidrug resistance. Plasmid 89, 22-26, doi:10.1016/j.plasmid.2016.11.005 (2017).
73 Campos, M. J. et al. Prevalence of quinolone resistance determinants in non-typhoidal Salmonella isolates from human origin in Extremadura, Spain. Diagn Microbiol Infect Dis 79, 64-69, doi:10.1016/j.diagmicrobio.2014.01.010 (2014).
74 Akiyama, T. & Khan, A. A. Isolation and characterization of small qnrS1-carrying plasmids from imported seafood isolates of Salmonella enterica that are highly similar to plasmids of clinical isolates. FEMS Immunol Med Microbiol 64, 429-432, doi:10.1111/j.1574-695X.2011.00921.x (2012).
75 Overbeek, R. et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42, D206-214, doi:10.1093/nar/gkt1226 (2014).
76 Allmeier, H., Cresnar, B., Greck, M. & Schmitt, R. Complete nucleotide sequence of Tn1721: gene organization and a novel gene product with features of a chemotaxis protein. Gene 111, 11-20 (1992).
77 Gillings, M. R. Integrons: past, present, and future. Microbiol Mol Biol Rev 78, 257-277, doi:10.1128/MMBR.00056-13 (2014).
78 Mahillon, J. & Chandler, M. Insertion sequences. Microbiol Mol Biol Rev 62, 725-774 (1998).
79 Partridge, S. R. Analysis of antibiotic resistance regions in Gram-negative bacteria. FEMS Microbiol Rev 35, 820-855, doi:10.1111/j.1574-6976.2011.00277.x (2011).
80 Brouwer, M. S. et al. IncI shufflons: Assembly issues in the next-generation sequencing era. Plasmid 80, 111-117, doi:10.1016/j.plasmid.2015.04.009 (2015).
81 Zhi, C., Lv, L., Yu, L. F., Doi, Y. & Liu, J. H. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 16, 292-293, doi:10.1016/S1473-3099(16)00063-3 (2016).
82 Gillings, M. R. et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J 9, 1269-1279, doi:10.1038/ismej.2014.226 (2015).
83 Chen, Y. T. et al. KPC-2-encoding plasmids from Escherichia coli and Klebsiella pneumoniae in Taiwan. J Antimicrob Chemother 69, 628-631, doi:10.1093/jac/dkt409 (2014).
84 Yan, J. J., Chiou, C. S., Lauderdale, T. L., Tsai, S. H. & Wu, J. J. Cephalosporin and ciprofloxacin resistance in Salmonella, Taiwan. Emerg Infect Dis 11, 947-950, doi:10.3201/eid1106.041153 (2005).
85 Hooton, S. P. et al. The complete plasmid sequences of Salmonella enterica serovar Typhimurium U288. Plasmid 76, 32-39, doi:10.1016/j.plasmid.2014.08.002 (2014).
86 Rasschaert, G. et al. Effect of farm type on within-herd Salmonella prevalence, serovar distribution, and antimicrobial resistance. J Food Prot 75, 859-866, doi:10.4315/0362-028X.JFP-11-469 (2012).
87 Chin, C. S. et al. The origin of the Haitian cholera outbreak strain. N. Engl. J. Med. 364, 33-42, doi:10.1056/NEJMoa1012928 (2011).
88 Gronvall, G., Boddie, C., Knutsson, R. & Colby, M. One health security: an important component of the global health security agenda. Biosecur Bioterror 12, 221-224, doi:10.1089/bsp.2014.0044 (2014).
89 WHO's first global report on antibiotic resistance reveals serious, worldwide threat to public health. (2014).
90 Chiou, C. S. & Jones, A. L. Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J. Bacteriol. 175, 732-740 (1993).