簡易檢索 / 詳目顯示

研究生: 陳盈元
Chen, Ying-Yuan
論文名稱: 表皮生長因子受器抑制劑的用藥期間長短對晚期肺腺癌抗藥基因的影響
Relevance Between Treatment Duration with EGFR Inhibitors and the Resistance Genes in Advanced Lung Adenocarcinoma
指導教授: 曾堯麟
Tseng, Yau-Lin
洪澤民
Hong, Tse-Ming
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 123
中文關鍵詞: 非小細胞肺癌EGFR突變酪胺酸激酶抑制劑救援性切除手術抗藥性基因次世代定序
外文關鍵詞: non-small cell lung cancer, EGFR mutation, tyrosine kinase inhibitor, salvage resection, resistance-related genes, next-generation sequencing
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討在接受酪胺酸激酶抑制劑(TKI)治療後,具表皮生長因子接受器(EGFR)突變之晚期非小細胞肺癌(NSCLC)患者進行救援性肺切除手術的臨床角色。為釐清此整合性治療策略之可行性、效果與分子意義,我們進行一系列回顧性研究,從實作可行性評估、臨床效益驗證,到基因體變異解析,逐步建立完整的證據鏈。
    我們首先分析TKI治療後仍有侷限性殘存病灶(包括疾病控制穩定、部分緩解或主腫瘤寡進展)的患者,結果顯示在多專科團隊嚴格篩選與周全圍手術管理下,手術可安全完成,且患者術後的無病存活期(PFS)與整體存活期(OS)均具良好表現。隨後,我們採用傾向分數匹配設計,比較接受手術合併TKI與僅持續TKI治療患者的長期成效,發現手術組的PFS與OS均顯著優於對照組,且手術為獨立的預後改善因子;在多項分析中亦持續觀察到較早手術的患者有較佳的預後,顯示手術時機的重要性。基於此,我們進一步利用次世代定序(targeted NGS)分析術後腫瘤組織,依TKI使用時長分為短期與長期兩組。結果顯示,延遲手術的患者腫瘤中累積較高比例的抗藥性相關突變(如T790M、EGFR擴增、MET、ERBB2、PIK3CA),並伴隨PFS與OS的下降趨勢,提示延後手術可能促進耐藥基因的出現,影響後續治療成效。
    綜合上述,對TKI反應良好且病灶侷限之EGFR突變晚期NSCLC患者,及早進行救援性肺切除手術不僅安全可行,亦可能延長存活並降低抗藥性突變的發生,應納入多模式治療策略,並透過前瞻性臨床試驗加以驗證以優化治療決策。

    This dissertation investigates the clinical role of salvage pulmonary resection in patients with advanced epidermal growth factor receptor (EGFR)–mutant non-small cell lung cancer (NSCLC) following tyrosine kinase inhibitor (TKI) therapy. To clarify the feasibility, efficacy, and molecular implications of this integrated treatment strategy, we conducted a series of retrospective studies progressing from feasibility assessment and clinical benefit evaluation to genomic alteration analysis, thereby building a continuum of evidence.
    We analyzed patients with limited residual disease—either stable or partially regressed lesions or oligoprogression of the main tumor—and found that, under careful multidisciplinary selection, surgery was safe and yielded favorable progression-free survival (PFS) and overall survival (OS). A propensity score–matched comparison of surgery plus TKI versus TKI alone showed significantly longer PFS and OS in the surgical group, with surgery as an independent prognostic factor; earlier operations were consistently associated with better outcomes. To further explore the role of timing, we performed targeted next-generation sequencing (NGS) on resected tumors, stratifying patients by TKI duration before surgery. Delayed surgery correlated with more resistance-related alterations—including T790M, EGFR amplification, MET, ERBB2, and PIK3CA—and a trend toward shorter PFS and OS, suggesting that postponement may facilitate resistance evolution and compromise subsequent therapy.
    These findings indicate that, in selected EGFR-mutant NSCLC with localized residual disease after TKI, early salvage resection is feasible, safe, and may prolong survival while reducing resistance mutations. This approach should be integrated into multimodal treatment planning and validated in prospective trials.

    摘要 i Abstract ii 誌謝 iii Table of Contents iv List of Tables vii List of Figures viii Chapter 1: Introduction 1 1.1 Clinical Background and Rationale 1 1.2 Clinical Gaps and Challenges 2 1.3 Research Objectives 2 1.4 Dissertation Structure 2 Chapter 2: Literature Review and Study Design 3 2.1 Literature Review 3 2.1.1 EGFR-Mutant NSCLC and EGFR-TKI Therapy 3 2.1.2 Role of Surgery in Advanced EGFR-mutant NSCLC 3 2.1.3 Impact of TKI Duration and Molecular Evolution 4 2.1.4 Integration of Next-Generation Sequencing in Surgical Specimens 4 2.2 Study Design 5 Chapter 3: Results 6 3.1 Study 1: Clinical Feasibility and Outcomes of Salvage Surgery After EGFR-TKI Therapy 6 3.1.1 Study Overview 6 3.1.2 Materials and Methods 6 3.1.3 Results 9 3.2 Study 2: Comparative Survival Outcomes of EGFR-Mutant NSCLC With or Without Salvage Surgery Following TKI Therapy 24 3.2.1 Study Overview 24 3.2.2 Materials and Methods 24 3.2.3 Results 26 3.3 Study 3: Impact of Preoperative EGFR-TKI Duration on Postoperative Outcomes and Resistance Genomic Profiles in EGFR-Mutant NSCLC 45 3.3.1 Study Overview 45 3.3.2 Material and Methods 45 3.3.3 Results 49 Chapter 4: Discussion 87 4.1 Principal Findings 87 4.2 Timing of Surgery and Resistance Evolution 88 4.3 Genomic Alterations in Resected Tumors 89 4.4 Selection of Surgical Extent in Salvage Resection 91 4.5 Clinical Implications 91 4.6 Non-Surgical Approaches to Local Control 92 4.7 Limitations 93 4.8 Future Perspectives 94 Chapter 5: Conclusion 96 Reference(s) 97 Appendix A-I

    Al-Halabi, H., Sayegh, K., Digamurthy, S. R., Niemierko, A., Piotrowska, Z., Willers, H., & Sequist, L. V. (2015). Pattern of Failure Analysis in Metastatic EGFR-Mutant Lung Cancer Treated with Tyrosine Kinase Inhibitors to Identify Candidates for Consolidation Stereotactic Body Radiation Therapy. Journal of Thoracic Oncology, 10(11), 1601–1607. https://doi.org/10.1097/jto.0000000000000648
    Aokage, K., Suzuki, K., Saji, H., Wakabayashi, M., Kataoka, T., Sekino, Y., Fukuda, H., Endo, M., Hattori, A., Mimae, T., Miyoshi, T., Isaka, M., Yoshioka, H., Nakajima, R., Nakagawa, K., Okami, J., Ito, H., Kuroda, H., Tsuboi, M., … Daido, M. (2023). Segmentectomy for ground-glass-dominant lung cancer with a tumour diameter of 3 cm or less including ground-glass opacity (JCOG1211): a multicentre, single-arm, confirmatory, phase 3 trial. The Lancet Respiratory Medicine, 11(6), 540–549. https://doi.org/10.1016/s2213-2600(23)00041-3
    Austin, P. C. (2008). A critical appraisal of propensity‐score matching in the medical literature between 1996 and 2003. Statistics in Medicine, 27(12), 2037–2049. https://doi.org/10.1002/sim.3150
    Bean, J., Brennan, C., Shih, J.-Y., Riely, G., Viale, A., Wang, L., Chitale, D., Motoi, N., Szoke, J., Broderick, S., Balak, M., Chang, W.-C., Yu, C.-J., Gazdar, A., Pass, H., Rusch, V., Gerald, W., Huang, S.-F., Yang, P.-C., … Pao, W. (2007). MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proceedings of the National Academy of Sciences, 104(52), 20932–20937. https://doi.org/10.1073/pnas.0710370104
    Bodner, S. M., Minna, J. D., Jensen, S. M., D’Amico, D., Carbone, D., Mitsudomi, T., Fedorko, J., Buchhagen, D. L., Nau, M. M., & Gazdar, A. F. (1992). Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation. Oncogene, 7(4), 743–749.
    Boeva, V., Popova, T., Lienard, M., Toffoli, S., Kamal, M., Tourneau, C. L., Gentien, D., Servant, N., Gestraud, P., Frio, T. R., Hupé, P., Barillot, E., & Laes, J.-F. (2014). Multi-factor data normalization enables the detection of copy number aberrations in amplicon sequencing data. Bioinformatics, 30(24), 3443–3450. https://doi.org/10.1093/bioinformatics/btu436
    Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 74(3), 229–263. https://doi.org/10.3322/caac.21834
    Brunelli, A., Decaluwe, H., Gossot, D., Guerrera, F., Szanto, Z., & Falcoz, P. E. (2020). Perioperative outcomes of segmentectomies versus lobectomies in high-risk patients: an ESTS database analysis. European Journal of Cardio-Thoracic Surgery, 59(2), 389–394. https://doi.org/10.1093/ejcts/ezaa308
    Bryant, A. S., Cerfolio, R. J., & Minnich, D. J. (2012). Survival and quality of life at least 1 year after pneumonectomy. The Journal of Thoracic and Cardiovascular Surgery, 144(5), 1139–1145. https://doi.org/10.1016/j.jtcvs.2012.07.083
    Casiraghi, M., Maisonneuve, P., Piperno, G., Bellini, R., Brambilla, D., Petrella, F., Marinis, F. D., & Spaggiari, L. (2017). Salvage Surgery After Definitive Chemoradiotherapy for Non-small Cell Lung Cancer. Seminars in Thoracic and Cardiovascular Surgery, 29(2), 233–241. https://doi.org/10.1053/j.semtcvs.2017.02.001
    Chen, Y., Yen, Y., Lai, W., Huang, W., Chang, C., & Tseng, Y. (2021). Outcomes of salvage lung resections in advanced EGFR ‐mutant lung adenocarcinomas under EGFR TKIs. Thoracic Cancer, 12(20), 2655–2665. https://doi.org/10.1111/1759-7714.13646
    Chen, Y.-Y., Lin, K.-H., Kuo, Y.-S., Tsai, Y.-M., Huang, H.-K., & Huang, T.-W. (2023). Therapeutic impact of epidermal growth factor receptor tyrosine kinase inhibitor with various treatment combinations for advanced lung adenocarcinoma. World Journal of Surgical Oncology, 21(1), 326. https://doi.org/10.1186/s12957-023-03203-6
    Chen, Y.-Y., Su, P.-L., Huang, W.-L., Chang, C.-C., Yen, Y.-T., Lin, C.-C., & Tseng, Y.-L. (2022). The surgical resection of the primary tumor increases survival in patients with EGFR-mutant advanced non-small cell lung cancer: a tertiary center cohort study. Scientific Reports, 12(1), 22560. https://doi.org/10.1038/s41598-022-22957-9
    Elamin, Y. Y., Gomez, D. R., Antonoff, M. B., Robichaux, J. P., Tran, H., Shorter, M. K., Bohac, J. M., Negrao, M. V., Le, X., Rinsurogkawong, W., Lewis, J., Lacerda, L., Roarty, E. B., Swisher, S. G., Roth, J. A., Zhang, J., Papadimitrakopoulou, V., & Heymach, J. V. (2019). Local Consolidation Therapy (LCT) After First Line Tyrosine Kinase Inhibitor (TKI) for Patients With EGFR Mutant Metastatic Non–small-cell Lung Cancer (NSCLC). Clinical Lung Cancer, 20(1), 43–47. https://doi.org/10.1016/j.cllc.2018.09.015
    Eng, J., Woo, K. M., Sima, C. S., Plodkowski, A., Hellmann, M. D., Chaft, J. E., Kris, M. G., Arcila, M. E., Ladanyi, M., & Drilon, A. (2015). Impact of Concurrent PIK3CA Mutations on Response to EGFR Tyrosine Kinase Inhibition in EGFR-Mutant Lung Cancers and on Prognosis in Oncogene-Driven Lung Adenocarcinomas. Journal of Thoracic Oncology, 10(12), 1713–1719. https://doi.org/10.1097/jto.0000000000000671
    Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., Lindeman, N., Gale, C.-M., Zhao, X., Christensen, J., Kosaka, T., Holmes, A. J., Rogers, A. M., Cappuzzo, F., Mok, T., Lee, C., Johnson, B. E., Cantley, L. C., & Jänne, P. A. (2007). MET Amplification Leads to Gefitinib Resistance in Lung Cancer by Activating ERBB3 Signaling. Science, 316(5827), 1039–1043. https://doi.org/10.1126/science.1141478
    Fountzilas, E., Pearce, T., Baysal, M. A., Chakraborty, A., & Tsimberidou, A. M. (2025). Convergence of evolving artificial intelligence and machine learning techniques in precision oncology. Npj Digital Medicine, 8(1), 75. https://doi.org/10.1038/s41746-025-01471-y
    Fu, J., Tong, Y., Xu, Z., Li, Y., Zhao, Y., Wang, T., Li, C., & Cang, S. (2023). Impact of TP53 Mutations on EGFR-Tyrosine Kinase Inhibitor Efficacy and Potential Treatment Strategy. Clinical Lung Cancer, 24(1), 29–39. https://doi.org/10.1016/j.cllc.2022.08.007
    Goldstraw, P., Chansky, K., Crowley, J., Rami-Porta, R., Asamura, H., Eberhardt, W. E. E., Nicholson, A. G., Groome, P., Mitchell, A., Bolejack, V., Institutions, I. A. for the S. of L. C. S. and P. F. C., Advisory Boards, and Participating, Goldstraw, P., Rami-Porta, R., Asamura, H., Ball, D., Beer, D. G., Beyruti, R., Bolejack, V., Chansky, K., … Yokoi, K. (2016). The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. Journal of Thoracic Oncology, 11(1), 39–51. https://doi.org/10.1016/j.jtho.2015.09.009
    Goldstraw, P., Crowley, J., Chansky, K., Giroux, D. J., Groome, P. A., Rami-Porta, R., Postmus, P. E., Rusch, V., Sobin, L., Committee, I. A. for the S. of L. C. I. S., & Institutions, P. (2007). The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. Journal of Thoracic Oncology : Official Publication of the International Association for the Study of Lung Cancer, 2(8), 706–714. https://doi.org/10.1097/jto.0b013e31812f3c1a
    Hata, A. N., Niederst, M. J., Archibald, H. L., Gomez-Caraballo, M., Siddiqui, F. M., Mulvey, H. E., Maruvka, Y. E., Ji, F., Bhang, H. C., Radhakrishna, V. K., Siravegna, G., Hu, H., Raoof, S., Lockerman, E., Kalsy, A., Lee, D., Keating, C. L., Ruddy, D. A., Damon, L. J., … Engelman, J. A. (2016). Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nature Medicine, 22(3), 262–269. https://doi.org/10.1038/nm.4040
    Hellmann, M. D., Chaft, J. E., William, W. N., Rusch, V., Pisters, K. M. W., Kalhor, N., Pataer, A., Travis, W. D., Swisher, S. G., Kris, M. G., & Group, T. U. of T. M. A. L. C. C. (2014). Pathological response after neoadjuvant chemotherapy in resectable non-small-cell lung cancers: proposal for the use of major pathological response as a surrogate endpoint. The Lancet Oncology, 15(1), e42–e50. https://doi.org/10.1016/s1470-2045(13)70334-6
    Hishida, T., Nagai, K., Mitsudomi, T., Yokoi, K., Kondo, H., Horinouchi, H., Akiyama, H., Nagayasu, T., Tsuboi, M., & Group, T. J. C. O. (2010). Salvage surgery for advanced non–small cell lung cancer after response to gefitinib. The Journal of Thoracic and Cardiovascular Surgery, 140(5), e69–e71. https://doi.org/10.1016/j.jtcvs.2010.06.035
    Hou, H., Qin, K., Liang, Y., Zhang, C., Liu, D., Jiang, H., Liu, K., Zhu, J., Lv, H., Li, T., & Zhang, X. (2019). Concurrent TP53 mutations predict poor outcomes of EGFR-TKI treatments in Chinese patients with advanced NSCLC. Cancer Management and Research, 11(0), 5665–5675. https://doi.org/10.2147/cmar.s201513
    Hsu, K.-H., Huang, J.-W., Tseng, J.-S., Chen, K.-W., Weng, Y.-C., Yu, S.-L., Yang, T.-Y., Huang, Y.-H., Chen, J. J. W., Chen, K.-C., & Chang, G.-C. (2021). Primary Tumor Radiotherapy During EGFR-TKI Disease Control Improves Survival of Treatment Naïve Advanced EGFR-Mutant Lung Adenocarcinoma Patients. OncoTargets and Therapy, 14, 2139–2148. https://doi.org/10.2147/ott.s300267
    Izumi, H., Yamasaki, A., Ueda, Y., Sumikawa, T., Maeta, H., Nakamoto, S., & Shimizu, E. (2018). Squamous Cell Carcinoma Transformation from EGFR-mutated Lung Adenocarcinoma: A Case Report and Literature Review. Clinical Lung Cancer, 19(1), e63–e66. https://doi.org/10.1016/j.cllc.2017.10.005
    Koulouris, A., Tsagkaris, C., Corriero, A. C., Metro, G., & Mountzios, G. (2022). Resistance to TKIs in EGFR-Mutated Non-Small Cell Lung Cancer: From Mechanisms to New Therapeutic Strategies. Cancers, 14(14), 3337. https://doi.org/10.3390/cancers14143337
    Kuo, S.-W., Chen, P.-H., Lu, T.-P., Chen, K.-C., Liao, H.-C., Tsou, K.-C., Tsai, T.-M., Lin, M.-W., Hsu, H.-H., & Chen, J.-S. (2022). Primary Tumor Resection for Stage IV Non-small-cell Lung Cancer Without Progression After First-Line Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor Treatment: A Retrospective Case–Control Study. Annals of Surgical Oncology, 29(8), 4873–4884. https://doi.org/10.1245/s10434-022-11483-7
    Lee, C., Kim, S., Lee, J. S., Lee, J. E., Kim, S., Yang, I. S., Kim, H. R., Lee, J. H., Kim, S., & Cho, B. C. (2017). Next-generation sequencing reveals novel resistance mechanisms and molecular heterogeneity in EGFR-mutant non-small cell lung cancer with acquired resistance to EGFR-TKIs. Lung Cancer, 113, 106–114. https://doi.org/10.1016/j.lungcan.2017.09.005
    Leo, F., Scanagatta, P., Vannucci, F., Brambilla, D., Radice, D., & Spaggiari, L. (2010). Impaired quality of life after pneumonectomy: Who is at risk? The Journal of Thoracic and Cardiovascular Surgery, 139(1), 49–52. https://doi.org/10.1016/j.jtcvs.2009.05.029
    Li, C., Wang, J., Shao, J.-B., Zhu, L.-M., Sun, Z.-G., & Zhang, N. (2019). Microwave ablation combined with chemotherapy improved progression free survival of IV stage lung adenocarcinoma patients compared with chemotherapy alone. Thoracic Cancer, 10(7), 1628–1635. https://doi.org/10.1111/1759-7714.13129
    Li, X.-M., Li, W.-F., Lin, J.-T., Yan, H.-H., Tu, H.-Y., Chen, H.-J., Wang, B.-C., Wang, Z., Zhou, Q., Zhang, X.-C., Su, J., Chen, R.-L., Wu, Y.-L., & Yang, J.-J. (2021). Predictive and Prognostic Potential of TP53 in Patients With Advanced Non–Small-Cell Lung Cancer Treated With EGFR-TKI: Analysis of a Phase III Randomized Clinical Trial (CTONG 0901). Clinical Lung Cancer, 22(2), 100-109.e3. https://doi.org/10.1016/j.cllc.2020.11.001
    Lin, M.-W., Yu, S.-L., Hsu, Y.-C., Chen, Y.-M., Lee, Y.-H., Hsiao, Y.-J., Lin, J.-W., Su, T.-J., Yang, C.-F. J., Chiang, X.-H., Hsu, H.-H., Chen, J.-S., & Hsieh, M.-S. (2023). Salvage Surgery for Advanced Lung Adenocarcinoma After Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment. The Annals of Thoracic Surgery, 116(1), 111–119. https://doi.org/10.1016/j.athoracsur.2023.01.027
    Liu, X., Mei, W., Zhang, P., & Zeng, C. (2024). PIK3CA mutation as an acquired resistance driver to EGFR-TKIs in non-small cell lung cancer: Clinical challenges and opportunities. Pharmacological Research, 202, 107123. https://doi.org/10.1016/j.phrs.2024.107123
    Lobato-Delgado, B., Priego-Torres, B., & Sanchez-Morillo, D. (2022). Combining Molecular, Imaging, and Clinical Data Analysis for Predicting Cancer Prognosis. Cancers, 14(13), 3215. https://doi.org/10.3390/cancers14133215
    Mok, T. S., Wu, Y.-L., Ahn, M.-J., Garassino, M. C., Kim, H. R., Ramalingam, S. S., Shepherd, F. A., He, Y., Akamatsu, H., Theelen, W. S. M. E., Lee, C. K., Sebastian, M., Templeton, A., Mann, H., Marotti, M., Ghiorghiu, S., Papadimitrakopoulou, V. A., & Investigators, A. (2017). Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. The New England Journal of Medicine, 376(7), 629–640. https://doi.org/10.1056/nejmoa1612674
    Morgillo, F., Corte, C. M. D., Fasano, M., & Ciardiello, F. (2016). Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open, 1(3), e000060. https://doi.org/10.1136/esmoopen-2016-000060
    Nguyen, K.-S. H., Kobayashi, S., & Costa, D. B. (2009). Acquired Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non–Small-Cell Lung Cancers Dependent on the Epidermal Growth Factor Receptor Pathway. Clinical Lung Cancer, 10(4), 281–289. https://doi.org/10.3816/clc.2009.n.039
    Ni, Y., Ye, X., Yang, X., Huang, G., Li, W., Wang, J., Han, X., Wei, Z., & Meng, M. (2020). Microwave ablation as local consolidative therapy for patients with extracranial oligometastatic EGFR-mutant non-small cell lung cancer without progression after first-line EGFR-TKIs treatment. Journal of Cancer Research and Clinical Oncology, 146(1), 197–203. https://doi.org/10.1007/s00432-019-03043-6
    Offin, M., Chan, J. M., Tenet, M., Rizvi, H. A., Shen, R., Riely, G. J., Rekhtman, N., Daneshbod, Y., Quintanal-Villalonga, A., Penson, A., Hellmann, M. D., Arcila, M. E., Ladanyi, M., Pe’er, D., Kris, M. G., Rudin, C. M., & Yu, H. A. (2019). Concurrent RB1 and TP53 Alterations Define a Subset of EGFR-Mutant Lung Cancers at risk for Histologic Transformation and Inferior Clinical Outcomes. Journal of Thoracic Oncology, 14(10), 1784–1793. https://doi.org/10.1016/j.jtho.2019.06.002
    Ohtaki, Y., Shimizu, K., Suzuki, H., Suzuki, K., Tsuboi, M., Mitsudomi, T., Takao, M., Murakawa, T., Ito, H., Yoshimura, K., Okada, M., Chida, M., & Surgery, for the J. A. for C. (2021). Salvage surgery for non-small cell lung cancer after tyrosine kinase inhibitor treatment. Lung Cancer, 153, 108–116. https://doi.org/10.1016/j.lungcan.2020.12.037
    Okamoto, T., Maruyama, R., Shoji, F., Asoh, H., Ikeda, J., Miyamoto, T., Nakamura, T., Miyake, T., & Ichinose, Y. (2005). Long-term survivors in stage IV non-small cell lung cancer. Lung Cancer (Amsterdam, Netherlands), 47(1), 85–91. https://doi.org/10.1016/j.lungcan.2004.06.006
    Peters, S., Adjei, A. A., Gridelli, C., Reck, M., Kerr, K., Felip, E., & Group, on behalf of the E. G. W. (2012). Metastatic non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up †. Annals of Oncology, 23, vii56–vii64. https://doi.org/10.1093/annonc/mds226
    Qiu, B., Liang, Y., Li, Q., Liu, G., Wang, F., Chen, Z., Liu, M., Zhao, M., & Liu, H. (2017). Local Therapy for Oligoprogressive Disease in Patients With Advanced Stage Non–small-cell Lung Cancer Harboring Epidermal Growth Factor Receptor Mutation. Clinical Lung Cancer, 18(6), e369–e373. https://doi.org/10.1016/j.cllc.2017.04.002
    Riely, G. J., Wood, D. E., Ettinger, D. S., Aisner, D. L., Akerley, W., Bauman, J. R., Bharat, A., Bruno, D. S., Chang, J. Y., Chirieac, L. R., DeCamp, M., Desai, A. P., Dilling, T. J., Dowell, J., Durm, G. A., Gettinger, S., Grotz, T. E., Gubens, M. A., Juloori, A., … Hang, L. (2024). Non-Small Cell Lung Cancer, Version 4.2024, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network : JNCCN, 22(4), 249–274. https://doi.org/10.6004/jnccn.2204.0023
    Rosell, R., Carcereny, E., Gervais, R., Vergnenegre, A., Massuti, B., Felip, E., Palmero, R., Garcia-Gomez, R., Pallares, C., Sanchez, J. M., Porta, R., Cobo, M., Garrido, P., Longo, F., Moran, T., Insa, A., Marinis, F. D., Corre, R., Bover, I., … Toracica, S. L. C. G. in collaboration with G. F. de P.-C. and A. I. O. (2012). Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. The Lancet. Oncology, 13(3), 239–246. https://doi.org/10.1016/s1470-2045(11)70393-x
    S., M. T., Yi-Long, W., Sumitra, T., Chih-Hsin, Y., Da-Tong, C., Nagahiro, S., Patrapim, S., Baohui, H., Benjamin, M., Yukito, I., Yutaka, N., Yuichiro, O., Jin-Ji, Y., Busyamas, C., Haiyi, J., L., D. E., L., W. C., A., A. A., & Masahiro, F. (2009). Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma. New England Journal of Medicine, 361(10), 947–957. https://doi.org/10.1056/nejmoa0810699
    Schreiner, W., Dudek, W., Lettmaier, S., Fietkau, R., & Sirbu, H. (2018). Long-Term Survival after Salvage Surgery for Local Failure after Definitive Chemoradiation Therapy for Locally Advanced Non-small Cell Lung Cancer. The Thoracic and Cardiovascular Surgeon, 66(2), 135–141. https://doi.org/10.1055/s-0037-1606597
    Schulte, T., Schniewind, B., Dohrmann, P., Küchler, T., & Kurdow, R. (2009). The Extent of Lung Parenchyma Resection Significantly Impacts Long-Term Quality of Life in Patients With Non-Small Cell Lung Cancer. Chest, 135(2), 322–329. https://doi.org/10.1378/chest.08-1114
    Schwartz, L. H., Litière, S., Vries, E. de, Ford, R., Gwyther, S., Mandrekar, S., Shankar, L., Bogaerts, J., Chen, A., Dancey, J., Hayes, W., Hodi, F. S., Hoekstra, O. S., Huang, E. P., Lin, N., Liu, Y., Therasse, P., Wolchok, J. D., & Seymour, L. (2016). RECIST 1.1—Update and clarification: From the RECIST committee. European Journal of Cancer, 62, 132–137. https://doi.org/10.1016/j.ejca.2016.03.081
    Sequist, L. V., Waltman, B. A., Dias-Santagata, D., Digumarthy, S., Turke, A. B., Fidias, P., Bergethon, K., Shaw, A. T., Gettinger, S., Cosper, A. K., Akhavanfard, S., Heist, R. S., Temel, J., Christensen, J. G., Wain, J. C., Lynch, T. J., Vernovsky, K., Mark, E. J., Lanuti, M., … Engelman, J. A. (2011). Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Science Translational Medicine, 3(75), 75ra26-75ra26. https://doi.org/10.1126/scitranslmed.3002003
    Shi, Y., Au, J. S.-K., Thongprasert, S., Srinivasan, S., Tsai, C.-M., Khoa, M. T., Heeroma, K., Itoh, Y., Cornelio, G., & Yang, P.-C. (2014). A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). Journal of Thoracic Oncology : Official Publication of the International Association for the Study of Lung Cancer, 9(2), 154–162. https://doi.org/10.1097/jto.0000000000000033
    Shigematsu, H., Lin, L., Takahashi, T., Nomura, M., Suzuki, M., Wistuba, I. I., Fong, K. M., Lee, H., Toyooka, S., Shimizu, N., Fujisawa, T., Feng, Z., Roth, J. A., Herz, J., Minna, J. D., & Gazdar, A. F. (2005). Clinical and Biological Features Associated With Epidermal Growth Factor Receptor Gene Mutations in Lung Cancers. Journal of the National Cancer Institute, 97(5), 339–346. https://doi.org/10.1093/jnci/dji055
    Sitthideatphaiboon, P., Teerapakpinyo, C., Korphaisarn, K., Leelayuwatanakul, N., Pornpatrananrak, N., Poungvarin, N., Chantranuwat, P., Shuangshoti, S., Aporntewan, C., Chintanapakdee, W., Sriuranpong, V., & Vinayanuwattikun, C. (2022). Co-occurrence CDK4/6 amplification serves as biomarkers of de novo EGFR TKI resistance in sensitizing EGFR mutation non-small cell lung cancer. Scientific Reports, 12(1), 2167. https://doi.org/10.1038/s41598-022-06239-y
    Song, W., Di, S., Liu, J., Fan, B., Zhao, J., Zhou, S., Chen, S., Dong, H., Yue, C., & Gong, T. (2020). Salvage surgery for advanced non‐small cell lung cancer after targeted therapy: A case series. Thoracic Cancer, 11(4), 1061–1067. https://doi.org/10.1111/1759-7714.13366
    Soria, J.-C., Ohe, Y., Vansteenkiste, J., Reungwetwattana, T., Chewaskulyong, B., Lee, K. H., Dechaphunkul, A., Imamura, F., Nogami, N., Kurata, T., Okamoto, I., Zhou, C., Cho, B. C., Cheng, Y., Cho, E. K., Voon, P. J., Planchard, D., Su, W.-C., Gray, J. E., … Investigators, F. (2018). Osimertinib in Untreated EGFR-Mutated Advanced Non–Small-Cell Lung Cancer. New England Journal of Medicine, 378(2), 113–125. https://doi.org/10.1056/nejmoa1713137
    Suzuki, K., Watanabe, S., Wakabayashi, M., Moriya, Y., Yoshino, I., Tsuboi, M., Mitsudomi, T., & Asamura, H. (2017). A nonrandomized confirmatory phase III study of sublobar surgical resection for peripheral ground glass opacity dominant lung cancer defined with thoracic thin-section computed tomography (JCOG0804/WJOG4507L). Journal of Clinical Oncology, 35(15_suppl), 8561–8561. https://doi.org/10.1200/jco.2017.35.15_suppl.8561
    Takahashi, T., Nau, M. M., Chiba, I., Birrer, M. J., Rosenberg, R. K., Vinocour, M., Levitt, M., Pass, H., Gazdar, A. F., & Minna, J. D. (1989). p53: A Frequent Target for Genetic Abnormalities in Lung Cancer. Science, 246(4929), 491–494. https://doi.org/10.1126/science.2554494
    Takezawa, K., Pirazzoli, V., Arcila, M. E., Nebhan, C. A., Song, X., Stanchina, E. de, Ohashi, K., Janjigian, Y. Y., Spitzler, P. J., Melnick, M. A., Riely, G. J., Kris, M. G., Miller, V. A., Ladanyi, M., Politi, K., & Pao, W. (2012). HER2 Amplification: A Potential Mechanism of Acquired Resistance to EGFR Inhibition in EGFR-Mutant Lung Cancers That Lack the Second-Site EGFRT790M Mutation. Cancer Discovery, 2(10), 922–933. https://doi.org/10.1158/2159-8290.cd-12-0108
    Tang, Y., Xia, B., Xie, R., Xu, X., Zhang, M., Wu, K., Wang, B., & Ma, S. (2020). Timing in combination with radiotherapy and patterns of disease progression in non-small cell lung cancer treated with EGFR-TKI. Lung Cancer, 140, 65–70. https://doi.org/10.1016/j.lungcan.2019.12.009
    Thomas, P. A., Falcoz, P.-E., Bernard, A., Pimpec-Barthes, F. L., Jougon, J., Brouchet, L., Massard, G., Dahan, M., Loundou, A., group, for the E., Alauzen, M., Andro, J.-F., Aubert, M., Avaro, J. P., Azorin, J., Bagan, P., Bellenot, F., Blin, V., Boitet, P., … Wurtz, A. (2016). Bilobectomy for lung cancer: contemporary national early morbidity and mortality outcomes†. European Journal of Cardio-Thoracic Surgery, 49(2), e38–e43. https://doi.org/10.1093/ejcts/ezv407
    Tsai, M.-J., Hung, J.-Y., Ma, J.-Y., Tsai, Y.-C., Wu, K.-L., Lee, M.-H., Kuo, C.-Y., Chuang, C.-H., Lee, T.-H., Lee, Y.-L., Huang, C.-M., Shen, M.-C., Yang, C.-J., & Chong, I.-W. (2023). Local Consolidative Therapy May Have Prominent Clinical Efficacy in Patients with EGFR-Mutant Advanced Lung Adenocarcinoma Treated with First-Line Afatinib. Cancers, 15(7), 2019. https://doi.org/10.3390/cancers15072019
    Tsutani, Y., Tsubokawa, N., Ito, M., Misumi, K., Hanaki, H., Miyata, Y., & Okada, M. (2018). Postoperative complications and prognosis after lobar resection versus sublobar resection in elderly patients with clinical Stage I non-small-cell lung cancer. European Journal of Cardio-Thoracic Surgery, 53(2), 366–371. https://doi.org/10.1093/ejcts/ezx296
    Wei, Z., Ye, X., Yang, X., Zheng, A., Huang, G., Li, W., Wang, J., Han, X., Meng, M., & Ni, Y. (2017). Microwave ablation combined with EGFR-TKIs versus only EGFR-TKIs in advanced NSCLC patients with EGFR-sensitive mutations. Oncotarget, 8(34), 56714–56725. https://doi.org/10.18632/oncotarget.18083
    Wu, F., Li, J., Jang, C., Wang, J., & Xiong, J. (2014). The role of Axl in drug resistance and epithelial-to-mesenchymal transition of non-small cell lung carcinoma. International Journal of Clinical and Experimental Pathology, 7(10), 6653–6661.
    Wu, Y.-L., Zhou, C., Hu, C.-P., Feng, J., Lu, S., Huang, Y., Li, W., Hou, M., Shi, J. H., Lee, K. Y., Xu, C.-R., Massey, D., Kim, M., Shi, Y., & Geater, S. L. (2014). Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. The Lancet. Oncology, 15(2), 213–222. https://doi.org/10.1016/s1470-2045(13)70604-1
    Xie, D., Deschamps, C., Shen, R. K., Deng, B., Wampfler, J. A., Cassivi, S. D., Nichols, F. C., Allen, M. S., Wigle, D. A., & Yang, P. (2015). Bilobectomy Versus Lobectomy for Non-Small Cell Lung Cancer: A Comparative Study of Outcomes, Long-Term Survival, and Quality of Life. The Annals of Thoracic Surgery, 100(1), 242–250. https://doi.org/10.1016/j.athoracsur.2015.03.018
    Xu, Q., Liu, H., Meng, S., Jiang, T., Li, X., Liang, S., Ren, S., & Zhou, C. (2019). First-line continual EGFR-TKI plus local ablative therapy demonstrated survival benefit in EGFR-mutant NSCLC patients with oligoprogressive disease. Journal of Cancer, 10(2), 522–529. https://doi.org/10.7150/jca.26494
    Yang, J. C.-H., Wu, Y.-L., Schuler, M., Sebastian, M., Popat, S., Yamamoto, N., Zhou, C., Hu, C.-P., O’Byrne, K., Feng, J., Lu, S., Huang, Y., Geater, S. L., Lee, K. Y., Tsai, C.-M., Gorbunova, V., Hirsh, V., Bennouna, J., Orlov, S., … Sequist, L. V. (2015). Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. The Lancet. Oncology, 16(2), 141–151. https://doi.org/10.1016/s1470-2045(14)71173-8
    Yu, H. A., Arcila, M. E., Rekhtman, N., Sima, C. S., Zakowski, M. F., Pao, W., Kris, M. G., Miller, V. A., Ladanyi, M., & Riely, G. J. (2013). Analysis of Tumor Specimens at the Time of Acquired Resistance to EGFR-TKI Therapy in 155 Patients with EGFR-Mutant Lung Cancers. Clinical Cancer Research, 19(8), 2240–2247. https://doi.org/10.1158/1078-0432.ccr-12-2246
    Zhang, B., Lewis, W., Stewart, C. A., Morris, B. B., Solis, L. M., Serrano, A., Xi, Y., Wang, Q., Lopez, E. R., Concannon, K., Heeke, S., Tang, X., Raso, G., Cardnell, R. J., Vokes, N., Blumenschein, G., Elamin, Y., Fosella, F., Tsao, A., … Le, X. (2024). Brief Report: Comprehensive Clinicogenomic Profiling of Small Cell Transformation From EGFR-Mutant NSCLC Informs Potential Therapeutic Targets. JTO Clinical and Research Reports, 5(2), 100623. https://doi.org/10.1016/j.jtocrr.2023.100623
    Zhang, Z., Lee, J. C., Lin, L., Olivas, V., Au, V., LaFramboise, T., Abdel-Rahman, M., Wang, X., Levine, A. D., Rho, J. K., Choi, Y. J., Choi, C.-M., Kim, S.-W., Jang, S. J., Park, Y. S., Kim, W. S., Lee, D. H., Lee, J.-S., Miller, V. A., … Bivona, T. G. (2012). Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nature Genetics, 44(8), 852–860. https://doi.org/10.1038/ng.2330
    Zhong, J., Li, L., Wang, Z., Bai, H., Gai, F., Duan, J., Zhao, J., Zhuo, M., Wang, Y., Wang, S., Zang, W., Wu, M., An, T., Rao, G., Zhu, G., & Wang, J. (2017). Potential Resistance Mechanisms Revealed by Targeted Sequencing from Lung Adenocarcinoma Patients with Primary Resistance to Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors (TKIs). Journal of Thoracic Oncology, 12(12), 1766–1778. https://doi.org/10.1016/j.jtho.2017.07.032

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE