簡易檢索 / 詳目顯示

研究生: 謝筑伊
Hsieh, Chu-Yi
論文名稱: 細菌感染時,先天免疫調控蛋白TAPE在NOD路徑以及自噬作用中所扮演的角色
Role of TAPE innate immune adaptor in regulating the NOD pathways and autophagy during bacterial infection
指導教授: 凌斌
Ling, Pin
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 46
中文關鍵詞: NOD1NOD2炎症TAPE自噬作用
外文關鍵詞: NOD1, NOD2, inflammation, autophagy, TAPE
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • NOD1與NOD2是位在細胞質中用於偵測細菌肽聚醣(peptidoglycan)的蛋白,藉由驅動NF-κB來活化發炎反應。NOD2是第一個被發現與克羅恩病(Crohn’s disease)相關的基因。NOD2在自噬作用(autophagy)中因可以標的入侵的胞內菌而發揮關鍵作用,特別是NOD2顯示與自噬蛋白ATG16L1有相互作用。NOD2缺少transmembrane domains,然而一些報導顯示NOD2會被招募到胞內體(endosome)並在那裡偵測細菌入侵。TAPE (TBK1-Associated Protein in Endolysosomes)是與TLR3、TLR4與RIG-I路徑調節有關的先天免疫蛋白,我們實驗室先前的研究發現TAPE缺陷的巨噬細胞在活的Salmonella感染後所活化的炎性細胞因子(inflammatory cytokine) 較正常細胞低,並且也缺乏抑制Salmonella感染時菌數的生長,但不影響E. coli感染時細菌的清除。此外生化分析結果顯示在Salmonella感染時TAPE缺陷的巨噬細胞活化的自噬蛋白LC3也較正常細胞少,這些數據都說明TAPE在防禦Salmonella感染的自噬作用中發揮作用。另外在HEK293細胞給予Salmonella感染或NOD2 ligand MDP刺激後,TAPE也顯現可以提升NOD2-mediated 的NF-κB活化。在本篇論文中我主要的工作重點是探討TAPE在細菌感染過程中調節NOD2和NOD1路徑以及自噬作用的功能和機制研究。我的研究結果顯示TAPE在NOD1 ligand iE-DAP刺激後可以提升NOD1-mediated 的NF-κB活化,以及TAPE也可以加乘NOD1/2下游kinase RIPK2 對NF-κB的活化。此外在HEK293T細胞中降低TAPE表達量會減少NOD1和RIPK2活化的NF-κB表達量,但較不影響更下游分子TRAF6活化的NF-κB表達量。另外TAPE在巨噬細胞中缺陷會降低NOD2 ligand刺激後所激活的IL-6表達量。同時TAPE還顯現與RIPK2有相互作用。這些數據都支持TAPE參與NOD1/2路徑並扮演重要角色。我另外的研究結果還顯現TAPE的缺乏在Salmonella感染期間會減少巨噬細胞中自噬蛋白(autophagic proteins )TBK1的磷酸化。這樣的結果支持TAPE是通過激活自噬作用來增強對胞內菌感染的保護。此外TAPE顯示與幾種自噬蛋白如ATG16和p62有相互作用。這些數據表明TAPE參與自噬作用。之後可以更深入研究TAPE是如何與這些分子有相互作用,以釐清TAPE是如何調控NOD路徑以及自噬作用的活化。

    NOD1 and NOD2 are cytosolic sensors for detecting bacterial peptidoglycan to trigger NF-κB activation leading to inflammation. NOD2 plays a key role in the regulation of autophagy clearance of bacterial infection via recruiting the autophagy protein ATG16L1. Notably, NOD2 is shown to translocate to endosomes to detect invading bacteria. TAPE (TBK1-Associated Protein in Endolysosomes) is an innate immune regulator implicated in the TLR3, TLR4 and RIG-I pathways. The previous studies of our lab results showed that TAPE-deficient macrophages were impaired in inflammatory cytokine production and bacterial clearance upon live Salmonella infection. Moreover, biochemical analyses showed that TAPE-deficient macrophages were impaired in cleavage of an autophagy marker LC3. These data suggest that TAPE play a role in autophagic defense Salmonella. In addition, TAPE was also showed positively regulated NOD2-mediated NF-κB activation upon Salmonella infection or NOD2 ligand MDP stimulation. Here my results showed that TAPE positively regulated NOD1 or NOD1/2 downstream kinase RIPK2-mediated NF-κB activation. Furthermore, TAPE knockdown significantly lowered NOD1 or RIPK2 but not TRAF6 induced NF-κB activation. In addition, TAPE deficiency impairs NOD2 signaling to inflammatory cytokines in macrophages. Moreover, TAPE showed interaction with RIPK2. These data support that TAPE is essential and involved in NOD1/2 pathway. Besides, my results also showed that TAPE deficiency reduces phosphorylation of TBK1 during the Salmonella infection in macrophages. Furthermore, TAPE showed interaction with several autophagic proteins such as ATG16 and p62. It supports that TAPE enhances protection against intracellular bacterial infections by activating autophagy and suggest that TAPE is involved in autophagy.

    摘要 I Abstract III 誌謝 VII 目錄 VIII 圖目錄 IX 附錄 IX 一、 緒論 (Introduction) 1 1. 先天性免疫與pattern-recognition receptors (PRRs) 1 2. NOD-like receptors (NLRs) 2 3. 與清除細菌相關的自噬作用 (autophagy) 3 4. TAPE (TBK1-associated Protein in Endolysosomes)在先天免疫的角色 4 二、 材料與方法 (Materials and Methods) 6 1. 細菌菌株 (Bacterial strains)與細菌感染 6 2. 細胞培養及試劑 (cell culture and reagents) 6 3. 小鼠巨噬細胞的分化 (Isolation of Murine Macrophages) 7 4. DNA轉染 (DNA transfection) 7 5. RNA干擾 (RNA interference) 8 6. Reporter assay 8 7. 免疫沉澱法與西方墨點轉漬法 (Co-immunoprecipitation and western blot) 8 8. 酵素免疫分析法 (Enzyme-linked immunosorbent assay, ELISA) 9 三、 實驗結果 (Results) 11 1. TAPE參與NOD家族活化路徑並扮演重要角色 11 2. TAPE與NOD2以及下游的kinase RIPK2有交互作用 (interaction) 12 3. TAPE在巨噬細胞 (macrophages)中有助於NOD2生產發炎細胞因子 (inflammatory cytokines) 13 4. TAPE與數個自噬蛋白 (autophagic proteins)有交互作用 (interaction) 13 5. 沙門氏菌 (Salmonella)感染巨噬細胞時TAPE會增強TBK1的磷酸化(phosphorylation) 14 6. Pathogen associated molecular patterns (PAMPs)會誘導TAPE的表達 14 四、 實驗討論 (Discussion) 15 五、 參考資料 (References) 19 六、 圖表與圖表敘述 (Figures and figure legends) 26 七、 附錄 (Appendix) 35

    Franchi, L., Munoz-Planillo, R., and Nunez, G. (2012) Sensing and reacting to microbes through the inflammasomes. Nat. Immunol. 13, 325-332
    2. Broz, P., and Monack, D. M. (2013) Newly described pattern recognition receptors team up against intracellular pathogens. Nat. Rev. Immunol. 13, 551-565
    3. von Moltke, J., Ayres, J. S., Kofoed, E. M., Chavarria-Smith, J., and Vance, R. E. (2013) Recognition of bacteria by inflammasomes. Annu. Rev. Immunol. 31, 73-106
    4. Girardin, S. E., Boneca, I. G., Carneiro, L. A., Antignac, A., Jehanno, M., Viala, J., Tedin, K., Taha, M. K., Labigne, A., Zahringer, U., Coyle, A. J., DiStefano, P. S., Bertin, J., Sansonetti, P. J., and Philpott, D. J. (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300, 1584-1587
    5. Girardin, S. E., Travassos, L. H., Herve, M., Blanot, D., Boneca, I. G., Philpott, D. J., Sansonetti, P. J., and Mengin-Lecreulx, D. (2003) Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J. Biol. Chem. 278, 41702-41708
    6. Chamaillard, M., Hashimoto, M., Horie, Y., Masumoto, J., Qiu, S., Saab, L., Ogura, Y., Kawasaki, A., Fukase, K., Kusumoto, S., Valvano, M. A., Foster, S. J., Mak, T. W., Nunez, G., and Inohara, N. (2003) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4, 702-707
    7. Park, J. H., Kim, Y. G., Shaw, M., Kanneganti, T. D., Fujimoto, Y., Fukase, K., Inohara, N., and Nunez, G. (2007) Nod1/RICK and TLR signaling regulate chemokine and antimicrobial innate immune responses in mesothelial cells. J. Immunol. 179, 514-521
    8. Masumoto, J., Yang, K., Varambally, S., Hasegawa, M., Tomlins, S. A., Qiu, S., Fujimoto, Y., Kawasaki, A., Foster, S. J., Horie, Y., Mak, T. W., Nunez, G., Chinnaiyan, A. M., Fukase, K., and Inohara, N. (2006) Nod1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivo. J. Exp. Med. 203, 203-213
    9. Lala, S., Ogura, Y., Osborne, C., Hor, S. Y., Bromfield, A., Davies, S., Ogunbiyi, O., Nunez, G., and Keshav, S. (2003) Crohn's disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125, 47-57
    10. Geddes, K., Rubino, S., Streutker, C., Cho, J. H., Magalhaes, J. G., Le Bourhis, L., Selvanantham, T., Girardin, S. E., and Philpott, D. J. (2010) Nod1 and Nod2 regulation of inflammation in the Salmonella colitis model. Infect. Immun. 78, 5107-5115
    11. Keestra, A. M., Winter, M. G., Klein-Douwel, D., Xavier, M. N., Winter, S. E., Kim, A., Tsolis, R. M., and Baumler, A. J. (2011) A Salmonella virulence factor activates the NOD1/NOD2 signaling pathway. MBio 2
    12. Nakamura, N., Lill, J. R., Phung, Q., Jiang, Z., Bakalarski, C., de Maziere, A., Klumperman, J., Schlatter, M., Delamarre, L., and Mellman, I. (2014) Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature 509, 240-244
    13. Kobayashi, K., Inohara, N., Hernandez, L. D., Galan, J. E., Nunez, G., Janeway, C. A., Medzhitov, R., and Flavell, R. A. (2002) RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416, 194-199
    14. Damgaard, R. B., Nachbur, U., Yabal, M., Wong, W. W., Fiil, B. K., Kastirr, M., Rieser, E., Rickard, J. A., Bankovacki, A., Peschel, C., Ruland, J., Bekker-Jensen, S., Mailand, N., Kaufmann, T., Strasser, A., Walczak, H., Silke, J., Jost, P. J., and Gyrd-Hansen, M. (2012) The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol. Cell 46, 746-758
    15. Philpott, D. J., Sorbara, M. T., Robertson, S. J., Croitoru, K., and Girardin, S. E. (2014) NOD proteins: regulators of inflammation in health and disease. Nat. Rev. Immunol. 14, 9-23
    16. Hugot, J. P., Chamaillard, M., Zouali, H., Lesage, S., Cezard, J. P., Belaiche, J., Almer, S., Tysk, C., O'Morain, C. A., Gassull, M., Binder, V., Finkel, Y., Cortot, A., Modigliani, R., Laurent-Puig, P., Gower-Rousseau, C., Macry, J., Colombel, J. F., Sahbatou, M., and Thomas, G. (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599-603
    17. Barrett, J. C., Hansoul, S., Nicolae, D. L., Cho, J. H., Duerr, R. H., Rioux, J. D., Brant, S. R., Silverberg, M. S., Taylor, K. D., Barmada, M. M., Bitton, A., Dassopoulos, T., Datta, L. W., Green, T., Griffiths, A. M., Kistner, E. O., Murtha, M. T., Regueiro, M. D., Rotter, J. I., Schumm, L. P., Steinhart, A. H., Targan, S. R., Xavier, R. J., Consortium, N. I. G., Libioulle, C., Sandor, C., Lathrop, M., Belaiche, J., Dewit, O., Gut, I., Heath, S., Laukens, D., Mni, M., Rutgeerts, P., Van Gossum, A., Zelenika, D., Franchimont, D., Hugot, J. P., de Vos, M., Vermeire, S., Louis, E., Belgian-French, I. B. D. C., Wellcome Trust Case Control, C., Cardon, L. R., Anderson, C. A., Drummond, H., Nimmo, E., Ahmad, T., Prescott, N. J., Onnie, C. M., Fisher, S. A., Marchini, J., Ghori, J., Bumpstead, S., Gwilliam, R., Tremelling, M., Deloukas, P., Mansfield, J., Jewell, D., Satsangi, J., Mathew, C. G., Parkes, M., Georges, M., and Daly, M. J. (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40, 955-962
    18. Cooney, R., Baker, J., Brain, O., Danis, B., Pichulik, T., Allan, P., Ferguson, D. J., Campbell, B. J., Jewell, D., and Simmons, A. (2010) NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 16, 90-97
    19. Cemma, M., and Brumell, J. H. (2012) Interactions of pathogenic bacteria with autophagy systems. Curr. Biol. 22, R540-545
    20. Birmingham, C. L., Smith, A. C., Bakowski, M. A., Yoshimori, T., and Brumell, J. H. (2006) Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem. 281, 11374-11383
    21. Pilli, M., Arko-Mensah, J., Ponpuak, M., Roberts, E., Master, S., Mandell, M. A., Dupont, N., Ornatowski, W., Jiang, S., Bradfute, S. B., Bruun, J. A., Hansen, T. E., Johansen, T., and Deretic, V. (2012) TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37, 223-234
    22. Thurston, T. L., Ryzhakov, G., Bloor, S., von Muhlinen, N., and Randow, F. (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10, 1215-1221
    23. Wild, P., Farhan, H., McEwan, D. G., Wagner, S., Rogov, V. V., Brady, N. R., Richter, B., Korac, J., Waidmann, O., Choudhary, C., Dotsch, V., Bumann, D., and Dikic, I. (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228-233
    24. Sander, L. E., Davis, M. J., Boekschoten, M. V., Amsen, D., Dascher, C. C., Ryffel, B., Swanson, J. A., Muller, M., and Blander, J. M. (2011) Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 474, 385-389
    25. Ou, X. M., Lemonde, S., Jafar-Nejad, H., Bown, C. D., Goto, A., Rogaeva, A., and Albert, P. R. (2003) Freud-1: A neuronal calcium-regulated repressor of the 5-HT1A receptor gene. J. Neurosci. 23, 7415-7425
    26. Zhao, M., Li, X. D., and Chen, Z. (2010) CC2D1A, a DM14 and C2 domain protein, activates NF-kappaB through the canonical pathway. J. Biol. Chem. 285, 24372-24380
    27. Matsuda, A., Suzuki, Y., Honda, G., Muramatsu, S., Matsuzaki, O., Nagano, Y., Doi, T., Shimotohno, K., Harada, T., Nishida, E., Hayashi, H., and Sugano, S. (2003) Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene 22, 3307-3318
    28. Chang, C. H., Lai, L. C., Cheng, H. C., Chen, K. R., Syue, Y. Z., Lu, H. C., Lin, W. Y., Chen, S. H., Huang, H. S., Shiau, A. L., Lei, H. Y., Qin, J., and Ling, P. (2011) TBK1-associated protein in endolysosomes (TAPE) is an innate immune regulator modulating the TLR3 and TLR4 signaling pathways. J. Biol. Chem. 286, 7043-7051
    29. Chen, K. R., Chang, C. H., Huang, C. Y., Lin, C. Y., Lin, W. Y., Lo, Y. C., Yang, C. Y., Hsing, E. W., Chen, L. F., Shih, S. R., Shiau, A. L., Lei, H. Y., Tan, T. H., and Ling, P. (2012) TBK1-associated protein in endolysosomes (TAPE)/CC2D1A is a key regulator linking RIG-I-like receptors to antiviral immunity. J. Biol. Chem. 287, 32216-32221
    30. Kao, C.-C. (2015) Emerging roles of TAPE innate immune adaptor in inflammasome regulation and Gram-negative bacterial infection, 國立成功大學
    31. Janeway, C. A., Jr. (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54 Pt 1, 1-13
    32. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M., and Hoffmann, J. A. (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973-983
    33. Medzhitov, R., Preston-Hurlburt, P., and Janeway, C. A., Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-397
    34. Poltorak, A., Smirnova, I., He, X., Liu, M. Y., Van Huffel, C., McNally, O., Birdwell, D., Alejos, E., Silva, M., Du, X., Thompson, P., Chan, E. K., Ledesma, J., Roe, B., Clifton, S., Vogel, S. N., and Beutler, B. (1998) Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol. Dis. 24, 340-355
    35. Kumar, H., Kawai, T., and Akira, S. (2011) Pathogen recognition by the innate immune system. Int. Rev. Immunol. 30, 16-34
    36. Tsuji, S., Matsumoto, M., Takeuchi, O., Akira, S., Azuma, I., Hayashi, A., Toyoshima, K., and Seya, T. (2000) Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect. Immun. 68, 6883-6890
    37. Hertz, C. J., Kiertscher, S. M., Godowski, P. J., Bouis, D. A., Norgard, M. V., Roth, M. D., and Modlin, R. L. (2001) Microbial lipopeptides stimulate dendritic cell maturation via Toll-like receptor 2. J. Immunol. 166, 2444-2450
    38. Ting, J. P., Lovering, R. C., Alnemri, E. S., Bertin, J., Boss, J. M., Davis, B. K., Flavell, R. A., Girardin, S. E., Godzik, A., Harton, J. A., Hoffman, H. M., Hugot, J. P., Inohara, N., Mackenzie, A., Maltais, L. J., Nunez, G., Ogura, Y., Otten, L. A., Philpott, D., Reed, J. C., Reith, W., Schreiber, S., Steimle, V., and Ward, P. A. (2008) The NLR gene family: a standard nomenclature. Immunity 28, 285-287
    39. Travassos, L. H., Carneiro, L. A., Girardin, S. E., Boneca, I. G., Lemos, R., Bozza, M. T., Domingues, R. C., Coyle, A. J., Bertin, J., Philpott, D. J., and Plotkowski, M. C. (2005) Nod1 participates in the innate immune response to Pseudomonas aeruginosa. J. Biol. Chem. 280, 36714-36718
    40. Allison, C. C., Kufer, T. A., Kremmer, E., Kaparakis, M., and Ferrero, R. L. (2009) Helicobacter pylori induces MAPK phosphorylation and AP-1 activation via a NOD1-dependent mechanism. J. Immunol. 183, 8099-8109
    41. Hasegawa, M., Yamazaki, T., Kamada, N., Tawaratsumida, K., Kim, Y. G., Nunez, G., and Inohara, N. (2011) Nucleotide-binding oligomerization domain 1 mediates recognition of Clostridium difficile and induces neutrophil recruitment and protection against the pathogen. J. Immunol. 186, 4872-4880
    42. Krieg, A., Correa, R. G., Garrison, J. B., Le Negrate, G., Welsh, K., Huang, Z., Knoefel, W. T., and Reed, J. C. (2009) XIAP mediates NOD signaling via interaction with RIP2. Proc. Natl. Acad. Sci. U. S. A. 106, 14524-14529
    43. Bertrand, M. J., Doiron, K., Labbe, K., Korneluk, R. G., Barker, P. A., and Saleh, M. (2009) Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity 30, 789-801
    44. Travassos, L. H., Carneiro, L. A., Ramjeet, M., Hussey, S., Kim, Y. G., Magalhaes, J. G., Yuan, L., Soares, F., Chea, E., Le Bourhis, L., Boneca, I. G., Allaoui, A., Jones, N. L., Nunez, G., Girardin, S. E., and Philpott, D. J. (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11, 55-62
    45. Homer, C. R., Kabi, A., Marina-Garcia, N., Sreekumar, A., Nesvizhskii, A. I., Nickerson, K. P., Chinnaiyan, A. M., Nunez, G., and McDonald, C. (2012) A dual role for receptor-interacting protein kinase 2 (RIP2) kinase activity in nucleotide-binding oligomerization domain 2 (NOD2)-dependent autophagy. J. Biol. Chem. 287, 25565-25576
    46. Dikic, I., and Elazar, Z. (2018) Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 349-364
    47. Yoshikawa, Y., Ogawa, M., Hain, T., Yoshida, M., Fukumatsu, M., Kim, M., Mimuro, H., Nakagawa, I., Yanagawa, T., Ishii, T., Kakizuka, A., Sztul, E., Chakraborty, T., and Sasakawa, C. (2009) Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat. Cell Biol. 11, 1233-1240
    48. Ogawa, M., Yoshimori, T., Suzuki, T., Sagara, H., Mizushima, N., and Sasakawa, C. (2005) Escape of intracellular Shigella from autophagy. Science 307, 727-731
    49. tenOever, B. R., Sharma, S., Zou, W., Sun, Q., Grandvaux, N., Julkunen, I., Hemmi, H., Yamamoto, M., Akira, S., Yeh, W. C., Lin, R., and Hiscott, J. (2004) Activation of TBK1 and IKKvarepsilon kinases by vesicular stomatitis virus infection and the role of viral ribonucleoprotein in the development of interferon antiviral immunity. J. Virol. 78, 10636-10649
    50. Rogaeva, A., Galaraga, K., and Albert, P. R. (2007) The Freud-1/CC2D1A family: transcriptional regulators implicated in mental retardation. J. Neurosci. Res. 85, 2833-2838
    51. Nakamura, A., Naito, M., Tsuruo, T., and Fujita, N. (2008) Freud-1/Aki1, a novel PDK1-interacting protein, functions as a scaffold to activate the PDK1/Akt pathway in epidermal growth factor signaling. Mol. Cell. Biol. 28, 5996-6009
    52. Martinelli, N., Hartlieb, B., Usami, Y., Sabin, C., Dordor, A., Miguet, N., Avilov, S. V., Ribeiro, E. A., Jr., Gottlinger, H., and Weissenhorn, W. (2012) CC2D1A is a regulator of ESCRT-III CHMP4B. J. Mol. Biol. 419, 75-88
    53. Usami, Y., Popov, S., Weiss, E. R., Vriesema-Magnuson, C., Calistri, A., and Gottlinger, H. G. (2012) Regulation of CHMP4/ESCRT-III function in human immunodeficiency virus type 1 budding by CC2D1A. J. Virol. 86, 3746-3756
    54. Gallagher, C. M., and Knoblich, J. A. (2006) The conserved c2 domain protein lethal (2) giant discs regulates protein trafficking in Drosophila. Dev. Cell 11, 641-653
    55. Inohara, N., Koseki, T., del Peso, L., Hu, Y., Yee, C., Chen, S., Carrio, R., Merino, J., Liu, D., Ni, J., and Nunez, G. (1999) Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J. Biol. Chem. 274, 14560-14567
    56. Ogura, Y., Inohara, N., Benito, A., Chen, F. F., Yamaoka, S., and Nunez, G. (2001) Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J. Biol. Chem. 276, 4812-4818
    57. Li, Z. W., Chu, W., Hu, Y., Delhase, M., Deerinck, T., Ellisman, M., Johnson, R., and Karin, M. (1999) The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J. Exp. Med. 189, 1839-1845
    58. Deretic, V., Saitoh, T., and Akira, S. (2013) Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722-737
    59. Mariathasan, S., and Monack, D. M. (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat. Rev. Immunol. 7, 31-40
    60. Liu, X., Wang, Q., Chen, W., and Wang, C. (2013) Dynamic regulation of innate immunity by ubiquitin and ubiquitin-like proteins. Cytokine Growth Factor Rev. 24, 559-570
    61. Yang, Y., Yin, C., Pandey, A., Abbott, D., Sassetti, C., and Kelliher, M. A. (2007) NOD2 pathway activation by MDP or Mycobacterium tuberculosis infection involves the stable polyubiquitination of Rip2. J. Biol. Chem. 282, 36223-36229
    62. Xie, P. (2013) TRAF molecules in cell signaling and in human diseases. J. Mol. Signal. 8, 7
    63. Wang, L.-C. (2017) Functional and mechanistic study of TAPE innate immune regulator in the RIG-I-like receptor and endosomal Toll-like receptor pathways, 國立成功大學

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE