| 研究生: |
潘泓叡 Pan, Hung-Ruei |
|---|---|
| 論文名稱: |
在多硫配位環境下與鐵氧化酶相關的三價鐵中間產物之探討 Studies of Fe(III) Intermediates in S-rich Ligation Environment Relevant to Iron Oxygenases |
| 指導教授: |
許鏵芬
Hsu, Hua-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 中間產物 、鐵硫錯合物 、超氧錯合物 、含鐵酵素 |
| 外文關鍵詞: | intermediate, iron thiolate complexs, uperoxo complex, iron enzyme |
| 相關次數: | 點閱:147 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧氣在許酵素的催化循環中扮演非常重要的角色。氧氣會與金屬蛋白的活性中心發生反應形成一些中間產物。在所有種類的金屬輔酶中,人體裡以鐵為中心的為大宗。Fe(III)-hydroxo、Fe(III)-superooxo和Fe(IV)-peroxo是最有反應性的中間產物。半胱胺酸雙加氧酶(Cysteine dioxygenase, CDO)在引入氧氣之後提高了半胱胺酸的氧化態並且透過氧化降解有毒的半胱胺酸。細胞色素酶(Cytochrome P450, cytP450)也是一種含鐵蛋白,含有一個卟啉和半胱胺酸。在氧氣進入催化循環後形成三價鐵超氧的結構,是為一個關鍵的中間產物。CDO和cytP450都是含有半胱胺酸配位的鐵蛋白, 含硫配位的酵素往往都和單純以氮作為配位的系統有著不同的本質。
我們實驗室利用利用富含硫的配位基H3[PS3”] (H3[PS3”]= H3[P(C6H3-3-SiMe3-2-SH)3])合成仿生錯合物,像是[PPh4][FeII(PS3”)(CH3CN)]和[PPh4][FeIII(PS3”)(OCH3)]。在這部分的研究中,我們專注於分離及探討與半胱胺酸配位的含鐵酵素中間產物相關的鐵硫錯合物。基於這個動機,合成以及鑑定了三個錯合物[PPh4][FeIII(PS3”)(OH)] (1)、[NMe4][FeIII(PS3”)(OAc)] (2)和[PPh4][Fe(PS3”)(O2)] (3)。這些錯合物都透過X光晶體學得到結構。錯合物1無法分離出純相,因此只能得到晶體數據。錯合物2透過光譜學了解其特性。最後,錯合物3由[PPh4][FeII(PS3”)(CH3CN)]與氧氣在低溫(~-40oC)反應形成。[Fe(O2)]2+官能基的電子組態經由不同種的物理方法,像是振動光譜、梅茲堡光譜及超導量子干涉儀確認。基於梅茲堡光譜的研究,鐵中心的氧化價數為三價鐵。而根據紅外光光譜,氧-氧的振動頻率在950cm-1被指認為超氧的模式。超導量子干涉儀數據顯示自旋態為S= 1。結合理論計算,S=1的總自旋是由S= 3/2的鐵中心及S= 1/2的超氧配位基經由強烈的反鐵磁耦合所組成。另外,還進行了錯合物3的反應性研究。錯合物3與TEMPO-H發生了奪氫反應(HAA)。自身衰退的產物經由光譜可以觀測到氧化膦的特徵,進而暗示了氧-氧鍵的斷裂伴隨著氧原子由金屬中心轉移到鍵結的膦配位基。
O2 plays an important role in catalytic cycle of many enzymes. Some intermediates would form after O2 involving in the active site of metalloprotein. In all category of metal cofactors, ones with iron centers are most abundant in human. Fe(III)-hydroxo, Fe(III)-superoxo and Fe(IV)-peroxo are the most reactive intermediates. Cysteine dioxygenase (CDO) introduces O2 to promote oxidation cysteine so that CDO can degrade toxic cysteine by oxygenation. Cytochrome P450 (cytP450) is also an iron-containing protein with porphyrin and a cysteine. Fe(III)-superoxo is a key intermediate after O2 involving in catalytic cycle. Both CDO and cytP450 are cysteinate-ligated iron enzymes, the thiolate-containing enzymes have different nature from only N donor ligand system.
Our laboratory has employed sulfur-rich ligand, H3[PS3”] (H3[PS3”]= H3[P(C6H3-3-SiMe3-2-SH)3]), to synthesize biomimetic complexes like [PPh4][FeII(PS3”)(CH3CN)] and [PPh4][FeIII(PS3”)(OCH3)]. In this work, we focus on isolating and studying iron thiolate complexes relevant to intermediates found in cysteinate-ligated iron enzymes. Based on this motivation, three complexes, [PPh4][FeIII(PS3”)(OH)] (1), [NMe4][FeIII(PS3”)(OAc)] (2) and [PPh4][Fe(PS3”)(O2)] (3) were synthesized and characterized. Structures of these complexes were determined by X-ray crystallography. [PPh4][FeIII(PS3”)(OH)] (1) can not be isolated in pure form, thus only the crystallographic data was obtained. The spectroscopic and structural data of complex 2 were characterized and investigated. Finally, complex 3 was formed by [PPh4][FeII(PS3”)(CH3CN)] reacting with O2(g) at low temperature (ca. -40oC). The electronic structure of [Fe(O2)]2+ moiety in 3 was confirmed by various physical methods such as vibrational spectroscopy, Mӧssbauer spectroscopy and SQUID magnetometry. The oxidation state of the iron center is assigned as a Fe(III) based on Mӧssbauer studies. According to the IR data, the O-O stretching frequency at 950 cm-1 is considered as a superoxo stretching mode. The SQUID data has shown a spin state of S= 1. Combined with the theoretic calculation, the total spin of S = 1 is attributed from a strong antiferromagnetic coupling between an S = 3/2 ferric center and an S = 1/2 superoxo ligand. In addition, reactivity studies of complex 3 were explored. Complex 3 was reacted with TEMPO-H via H-atom abstraction (HAA). The self-decay product characterized by spectroscopies gave a phosphine oxide characteristic, further implying O-O bond was cleaved followed by oxo-transfer from metal center to bound phosphine donor.
1. Chen, H.; Ikeda-Saito, M.; Shaik, S., Nature of the Fe−O2 Bonding in Oxy-myoglobin: Effect of the Protein. Journal of the American Chemical Society 2008, 130 (44), 14778-14790.
2. Goldsmith, C. R.; Jonas, R. T.; Stack, T. D. P., C−H Bond Activation by a Ferric Methoxide Complex: Modeling the Rate-Determining Step in the Mechanism of Lipoxygenase. Journal of the American Chemical Society 2002, 124 (1), 83-96.
3. Ogo, S.; Yamahara, R.; Roach, M.; Suenobu, T.; Aki, M.; Ogura, T.; Kitagawa, T.; Masuda, H.; Fukuzumi, S.; Watanabe, Y., Structural and spectroscopic features of a cis (hydroxo)-FeIII-(carboxylato) configuration as an active site model for lipoxygenases. Inorganic chemistry 2002, 41 (21), 5513-5520.
4. Cramer, C. J.; Tolman, W. B.; Theopold, K. H.; Rheingold, A. L., Variable character of O—O and M—O bonding in side-on (η2) 1: 1 metal complexes of O2. Proceedings of the National Academy of Sciences 2003, 100 (7), 3635-3640.
5. Hong, S.; Sutherlin, K. D.; Park, J.; Kwon, E.; Siegler, M. A.; Solomon, E. I.; Nam, W., Crystallographic and spectroscopic characterization and reactivities of a mononuclear non-haem iron (III)-superoxo complex. Nature Communications 2014, 5, 5440.
6. Denisov, I. G.; Makris, T. M.; Sligar, S. G.; Schlichting, I., Structure and chemistry of cytochrome P450. Chemical Reviews 2005, 105 (6), 2253-2278.
7. Kumar, D.; Thiel, W.; de Visser, S. P., Theoretical study on the mechanism of the oxygen activation process in cysteine dioxygenase enzymes. Journal of the American Chemical Society 2011, 133 (11), 3869-3882.
8. Villar-Acevedo, G.; Lugo-Mas, P.; Blakely, M. N.; Rees, J. A.; Ganas, A. S.; Hanada, E. M.; Kaminsky, W.; Kovacs, J. A., Metal-Assisted Oxo Atom Addition to an Fe (III) Thiolate. Journal of the American Chemical Society 2016, 139 (1), 119-129.
9. Karlsson, A.; Parales, J. V.; Parales, R. E.; Gibson, D. T.; Eklund, H.; Ramaswamy, S., Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron. Science 2003, 299 (5609), 1039-1042.
10. MacBeth, C. E.; Gupta, R.; Mitchell-Koch, K. R.; Young Jr, V. G.; Lushington, G. H.; Thompson, W. H.; Hendrich, M. P.; Borovik, A., Utilization of hydrogen bonds to stabilize M− O (H) units: Synthesis and properties of monomeric iron and manganese complexes with terminal oxo and hydroxo ligands. Journal of the American Chemical Society 2004, 126 (8), 2556-2567.
11. Mukherjee, J.; Lucas, R. L.; Zart, M. K.; Powell, D. R.; Day, V. W.; Borovik, A., Synthesis, structure, and physical properties for a series of monomeric iron (III) hydroxo complexes with varying hydrogen-bond networks. Inorganic Chemistry 2008, 47 (13), 5780-5786.
12. Bénisvy, L.; Halut, S.; Donnadieu, B.; Tuchagues, J.-P.; Chottard, J.-C.; Li, Y., Monomeric iron (II) hydroxo and iron (III) dihydroxo complexes stabilized by intermolecular hydrogen bonding. Inorganic Chemistry 2006, 45 (6), 2403-2405.
13. Kendall, A. J.; Zakharov, L. N.; Gilbertson, J. D., Synthesis and Stabilization of a Monomeric Iron (II) Hydroxo Complex via Intra Molecular Hydrogen Bonding in the Secondary Coordination Sphere. Inorganic Chemistry 2010, 49 (19), 8656-8658.
14. Soo, H. S.; Komor, A. C.; Iavarone, A. T.; Chang, C. J., A hydrogen-bond facilitated cycle for oxygen reduction by an acid-and base-compatible iron platform. Inorganic Chemistry 2009, 48 (21), 10024-10035.
15. Brines, L. M.; Coggins, M. K.; Poon, P. C. Y.; Toledo, S.; Kaminsky, W.; Kirk, M. L.; Kovacs, J. A., Water-Soluble Fe (II)–H2O Complex with a Weak O–H Bond Transfers a Hydrogen Atom via an Observable Monomeric Fe (III)–OH. Journal of the American Chemical Society 2015, 137 (6), 2253-2264.
16. Coggins, M. K.; Brines, L. M.; Kovacs, J. A., Synthesis and Structural Characterization of a Series of MnIIIOR Complexes, Including a Water-Soluble MnIIIOH That Promotes Aerobic Hydrogen-Atom Transfer. Inorganic chemistry 2013, 52 (21), 12383-12393.
17. Goldsmith, C. R.; Cole, A. P.; Stack, T. D. P., C− H Activation by a Mononuclear Manganese (III) Hydroxide Complex: Synthesis and Characterization of a Manganese-Lipoxygenase Mimic? Journal of the American Chemical Society 2005, 127 (27), 9904-9912.
18. Goldsmith, C. R.; Stack, T. D. P., Hydrogen atom abstraction by a mononuclear ferric hydroxide complex: insights into the reactivity of lipoxygenase. Inorganic Chemistry 2006, 45 (15), 6048-6055.
19. Drummond, M. J.; Ford, C. L.; Gray, D. L.; Popescu, C. V.; Fout, A. R., Radical Rebound Hydroxylation Versus H-Atom Transfer in Non-Heme Iron (III)-Hydroxo Complexes: Reactivity and Structural Differentiation. Journal of the American Chemical Society 2019.
20. Zaragoza, J. P. T.; Yosca, T. H.; Siegler, M. A.; Moënne-Loccoz, P.; Green, M. T.; Goldberg, D. P., Direct observation of oxygen rebound with an iron-hydroxide complex. Journal of the American Chemical Society 2017, 139 (39), 13640-13643.
21. Pangia, T. M.; Davies, C. G.; Prendergast, J. R.; Gordon, J. B.; Siegler, M. A.; Jameson, G. N.; Goldberg, D. P., Observation of Radical Rebound in a Mononuclear Nonheme Iron Model Complex. Journal of the American Chemical Society 2018, 140 (12), 4191-4194.
22. Cho, K.; Leeladee, P.; McGown, A. J.; DeBeer, S.; Goldberg, D. P., A high-valent iron–oxo corrolazine activates C–H bonds via hydrogen-atom transfer. Journal of the American Chemical Society 2012, 134 (17), 7392-7399.
23. Cho, J.; Kang, H. Y.; Liu, L. V.; Sarangi, R.; Solomon, E. I.; Nam, W., Mononuclear nickel (ii)-superoxo and nickel (iii)-peroxo complexes bearing a common macrocyclic TMC ligand. Chemical Science 2013, 4 (4), 1502-1508.
24. Cho, J.; Woo, J.; Nam, W., An “End-On” Chromium (III)-Superoxo Complex: Crystallographic and Spectroscopic Characterization and Reactivity in C− H Bond Activation of Hydrocarbons. Journal of the American Chemical Society 2010, 132 (17), 5958-5959.
25. Egan Jr, J. W.; Haggerty, B. S.; Rheingold, A. L.; Sendlinger, S. C.; Theopold, K. H., Crystal structure of a side-on superoxo complex of cobalt and hydrogen abstraction by a reactive terminal oxo ligand. Journal of the American Chemical Society 1990, 112 (6), 2445-2446.
26. Fujisawa, K.; Tanaka, M.; Moro-oka, Y.; Kitajima, N., A monomeric side-on superoxocopper (II) complex: Cu (O2)(HB (3-tBu-5-iPrpz) 3). Journal of the American Chemical Society 1994, 116 (26), 12079-12080.
27. Qin, K.; Incarvito, C. D.; Rheingold, A. L.; Theopold, K. H., A Structurally Characterized Chromium (III) Superoxide Complex Features “Side‐on” Bonding. Angewandte Chemie International Edition 2002, 41 (13), 2333-2335.
28. Yao, S.; Bill, E.; Milsmann, C.; Wieghardt, K.; Driess, M., A “Side‐on” Superoxonickel Complex [LNi (O2)] with a Square‐Planar Tetracoordinate Nickel (II) Center and Its Conversion into [LNi (μ‐OH) 2NiL]. Angewandte Chemie International Edition 2008, 47 (37), 7110-7113.
29. Oddon, F.; Chiba, Y.; Nakazawa, J.; Ohta, T.; Ogura, T.; Hikichi, S., Characterization of Mononuclear Non‐heme Iron (III)‐Superoxo Complex with a Five‐Azole Ligand Set. Angewandte Chemie International Edition 2015, 54 (25), 7336-7339.
30. Würtele, C.; Gaoutchenova, E.; Harms, K.; Holthausen, M. C.; Sundermeyer, J.; Schindler, S., Crystallographic characterization of a synthetic 1: 1 end‐on copper dioxygen adduct complex. Angewandte Chemie International Edition 2006, 45 (23), 3867-3869.
31. Maiti, D.; Lee, D. H.; Gaoutchenova, K.; Würtele, C.; Holthausen, M. C.; Narducci Sarjeant, A. A.; Sundermeyer, J.; Schindler, S.; Karlin, K. D., Reactions of a Copper (II) Superoxo Complex Lead to C-H and O-H Substrate Oxygenation: Modeling Copper‐Monooxygenase C-H Hydroxylation. Angewandte Chemie International Edition 2008, 47 (1), 82-85.
32. Anneser, M. R.; Haslinger, S.; Pöthig, A.; Cokoja, M.; D'Elia, V.; Högerl, M. P.; Basset, J.-M.; Kühn, F. E., Binding of molecular oxygen by an artificial heme analogue: investigation on the formation of an Fe–tetracarbene superoxo complex. Dalton Transactions 2016, 45 (15), 6449-6455.
33. Kieber-Emmons, M. T.; Annaraj, J.; Seo, M. S.; Van Heuvelen, K. M.; Tosha, T.; Kitagawa, T.; Brunold, T. C.; Nam, W.; Riordan, C. G., Identification of an “End-on” Nickel− Superoxo Adduct,[Ni (tmc)(O2)]+. Journal of the American Chemical Society 2006, 128 (44), 14230-14231.
34. Panda, C.; Chandra, A.; Corona, T.; Andris, E.; Pandey, B.; Garai, S.; Lindenmaier, N.; Künstner, S.; Farquhar, E. R.; Roithová, J.; Rajaraman, G.; Driess, M.; Ray, K., Nucleophilic versus Electrophilic Reactivity of Bioinspired Superoxido Nickel(II) Complexes. Angewandte Chemie International Edition 2018, 57 (45), 14883-14887.
35. Wang, C.-C.; Chang, H.-C.; Lai, Y.-C.; Fang, H.; Li, C.-C.; Hsu, H.-K.; Li, Z.-Y.; Lin, T.-S.; Kuo, T.-S.; Neese, F., A structurally characterized nonheme Cobalt–hydroperoxo complex derived from its superoxo intermediate via hydrogen atom abstraction. Journal of the American Chemical Society 2016, 138 (43), 14186-14189.
36. Chiang, C.-W.; Kleespies, S. T.; Stout, H. D.; Meier, K. K.; Li, P.-Y.; Bominaar, E. L.; Que Jr, L.; Münck, E.; Lee, W.-Z., Characterization of a paramagnetic mononuclear nonheme iron-superoxo complex. Journal of the American Chemical Society 2014, 136 (31), 10846-10849.
37. Fischer, A. A.; Lindeman, S. V.; Fiedler, A. T., Spectroscopic and computational studies of reversible O 2 binding by a cobalt complex of relevance to cysteine dioxygenase. Dalton Transactions 2017, 46 (39), 13229-13241.
38. Fischer, A. A.; Lindeman, S. V.; Fiedler, A. T., A synthetic model of the nonheme iron–superoxo intermediate of cysteine dioxygenase. Chemical Communications 2018, 54 (80), 11344-11347.
39. Maiti, D.; Fry, H. C.; Woertink, J. S.; Vance, M. A.; Solomon, E. I.; Karlin, K. D., A 1: 1 Copper− Dioxygen Adduct is an End-on Bound Superoxo Copper (II) Complex which Undergoes Oxygenation Reactions with Phenols. Journal of the American Chemical Society 2007, 129 (2), 264-265.
40. Kunishita, A.; Kubo, M.; Sugimoto, H.; Ogura, T.; Sato, K.; Takui, T.; Itoh, S., Mononuclear Copper (II)− Superoxo Complexes that Mimic the Structure and Reactivity of the Active Centers of PHM and DβM. Journal of the American Chemical Society 2009, 131 (8), 2788-2789.
41. Sanchez-Eguia, B.; Flores-Alamo, M.; Orio, M.; Castillo, I., Side-on cupric–superoxo triplet complexes as competent agents for H-abstraction relevant to the active site of PHM. Chemical Communications 2015, 51 (55), 11134-11137.
42. Fujita, K.; Schenker, R.; Gu, W.; Brunold, T. C.; Cramer, S. P.; Riordan, C. G., A Monomeric Nickel− Dioxygen Adduct Derived from a Nickel (I) Complex and O2. Inorganic chemistry 2004, 43 (11), 3324-3326.
43. Blakely, M. N.; Dedushko, M. A.; Poon, P. C. Y.; Villar-Acevedo, G.; Kovacs, J. A., Formation of a Reactive, Alkyl Thiolate-Ligated Fe (III)-Superoxo Intermediate Derived from Dioxygen. Journal of the American Chemical Society 2019.
44. Gordon, J. B.; Vilbert, A. C.; Siegler, M. A.; Lancaster, K. M.; Moënne-Loccoz, P.; Goldberg, D. P., A Nonheme Thiolate-Ligated Cobalt Superoxo Complex: Synthesis and Spectroscopic Characterization, Computational Studies, and Hydrogen Atom Abstraction Reactivity. Journal of the American Chemical Society 2019.
45. Lee, C. M.; Chuo, C. H.; Chen, C. H.; Hu, C. C.; Chiang, M. H.; Tseng, Y. J.; Hu, C. H.; Lee, G. H., Structural and Spectroscopic Characterization of a Monomeric Side‐On Manganese (IV) Peroxo Complex. Angewandte Chemie International Edition 2012, 51 (22), 5427-5430.
46. Lee, C.-M.; Sankaralingam, M.; Chuo, C.-H.; Tseng, T.-H.; Chen, P. P.-Y.; Chiang, M.-H.; Li, X.-X.; Lee, Y.-M.; Nam, W., A Mn (IV)-peroxo complex in the reactions with proton donors. Dalton Transactions 2019.
47. Chang, K.-C.; Huang, C.-J.; Chang, Y.-H.; Wu, Z.-H.; Kuo, T.-S.; Hsu, H.-F., Reactivity of a Fe (III)-Bound Methoxide Supported with a Tris (thiolato) phosphine Ligand: Activation of C–Cl Bond in CH2Cl2 by Nucleophilic Attack of a Fe (III)–OCH3 Moiety. Inorganic chemistry 2015, 55 (2), 566-572.
48. Chang, Y.-H.; Chan, P.-M.; Tsai, Y.-F.; Lee, G.-H.; Hsu, H.-F., Catalytic reduction of hydrazine to ammonia by a mononuclear iron (II) complex on a tris (thiolato) phosphine platform. Inorganic chemistry 2013, 53 (2), 664-666.
49. Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C., Synthesis, structure, and spectroscopic properties of copper (II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1, 7-bis (N-methylbenzimidazol-2′-yl)-2, 6-dithiaheptane] copper (II) perchlorate. Journal of the Chemical Society, Dalton Transactions 1984, (7), 1349-1356.
校內:2024-07-31公開