簡易檢索 / 詳目顯示

研究生: 馮翊祺
Feng, Yi-Chi
論文名稱: 多層奈米碳管波傳行為探討
Wave propagation in multi-walled carbon nanotubes
指導教授: 蘇于琪
Su, Yu-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 196
中文關鍵詞: 多層奈米碳管射線法Durbin數值逆轉換非局部理論Timoshenko梁暫態反應
外文關鍵詞: multi-walled carbon nanotube, nonlocal Timoshenko beam, Durbin method, ray method, transient responses
相關次數: 點閱:55下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討兩層及三層奈米碳管的簡支梁受衝擊載重後於觀測點的波傳行為,以Timoshenko梁理論為基礎分析多層奈米碳管,層與層間考慮凡德瓦力,並以Winkler彈簧模擬土壤及周圍介質的交互作用。
    分析方法上,以射線法理論解搭配Durbin逆數值轉換求得雙層及三層奈米碳管的波傳暫態反應。並探討微小因子對多層奈米碳管的影響,由結果可知當加入微小因子後其暫態反應會變得平滑,並且使外力施加後奈米碳管的觀測點上即刻產生反應。此外,本文亦探討奈米碳管的螺旋性與半徑對多層奈米碳管暫態反應的結果,我們發現多層奈米碳管的半徑為影響暫態反應的主要因素,而非螺旋性。最後,本文亦以頻散圖配合模態分析奈米碳管的穩態行為,結果顯示雙層奈米碳管共有四組不同振態,而三層奈米碳管共有六組振態。隨著微小因子的不同,頻散圖亦產生很大的差異。

    In this study, wave propagation behavior multi-walled carbon nanotubes is analyzed through nonlocal elasticity and Timoshenko beam theory. Van der Waals force is considered between layers, and the interaction between soil and surrounding medium is simulated by Winkler foundation. In terms of analytical methods, the wave propagation transient responses of double-walled and triple-walled carbon nanotubes are obtained by the ray method and the Durbin inverse numerical transformation. The effect of nonlocal parameter on multi-walled carbon nanotubes is also discussed. The results show that as the increment of nonlocal parameter, the transient responses become smoother, and the observation point of carbon nanotubes will react immediately after the external force is applied. In addition, we also discusses the effect of chirality and radius of the carbon nanotubes. We found that the radius of the multi-walled carbon nanotubes is the main factor for affecting the transient response, not the helicity. Finally, the steady-state behavior of carbon nanotubes is also analyzed with dispersion diagrams and modes. The results show that there are four groups of different vibration states for double-walled carbon nanotubes, while there are six groups for triple-walled carbon nanotubes. Dispersion plots also vary greatly with small factors.

    摘要 I Abstract II 致謝 VIII 目錄 X 表目錄 XII 圖目錄 XIII 符號表 XXV 第一章 緒論 1 1.1 文獻回顧 1 1.2 論文架構 3 第二章 多層奈米碳管的控制方程式 5 2.1 Eringen非局部彈性理論 5 2.2 凡德瓦力模型 6 2.3 雙層奈米碳管控制方程式 7 2.4 三層奈米碳管控制方程式 14 第三章 多層奈米碳管的頻散圖 20 3.1 兩層奈米碳管的頻散關係 20 3.2 三層奈米碳管的頻散關係 22 第四章 應用射線法於多層奈米碳管的波傳分析 26 4.1 在轉換域下的雙層奈米碳管控制方程式 26 4.2 射線法分析雙層奈米碳管轉換域下的解 28 4.2.1 雙層奈米碳管的位移通解 28 4.2.2 雙層奈米碳管的相位矩陣 32 4.2.3 雙層奈米碳管的邊界相位矩陣 37 4.2.4 雙層奈米碳管的轉換域暫態解 43 4.3 Durbin數值逆轉換 46 4.4 在轉換域下的三層奈米碳管控制方程式 48 4.5 射線法分析三層奈米碳管的暫態解 50 4.5.1 三層奈米碳管的位移通解 50 4.5.2 三層奈米碳管的相位矩陣 58 4.5.3 三層奈米碳管的邊界相位矩陣 69 4.5.4 三層奈米碳管的暫態解 71 第五章 結果與討論 76 5.1 多層奈米碳管參數使用 76 5.2 雙層奈米碳管之波傳結果 79 5.3 雙層奈米碳管螺旋性及頻散圖 84 5.4 三層奈米碳管之波傳結果 95 5.5 三層奈米碳管螺旋性及頻散圖 100 第六章 結論與展望 111 6.1 結論 111 6.2 展望 112 參考文獻 113 附錄A 雙層奈米碳管有限元素法與模態正交性 117 A.1 雙層奈米碳管自由振動問題的求解過程 117 A.2 雙層奈米碳管的模態正交性及模態疊加法 124 附錄B 多層奈米碳管模擬結果 141 附錄C 三層奈米碳管長周期結果 194

    [1] S. Iijima, Helical microtubules of graphitic carbon. Nature, Vol. 345, 56–58, 1991.
    [2] M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, Vol. 381, 678-680, 1996.
    [3] O. Gohardani, M.C. Elola, C. Elizetxea, Potential and prospective implementation of carbon nanotubes on next-generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences. Progress in Aerospace Science, Vol. 70, 42-68, 2014.
    [4] Q. Wang, Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes. International Journal of Solids and Structures, Vol. 41, 5451-5461, 2004.
    [5] W.H. Duan, C.M. Wang, Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. Journal of Applied Physics, Vol. 101, 024305, 2007.
    [6] J.N. Reddy, S.D. Pang, Nonlocal continuum theories of beams for the analysis of carbon nanotubes. Journal of Applied Physics, Vol. 103, 023511, 2008.
    [7] C.P. Wu, W.W. Lai, Free vibration of an embedded single-walled carbon nanotube with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method. Physica E, Vol. 68, 8-21, 2015.
    [8] X.Q. He, S. Kitipronchai, C.M. Wang, K.M. Liew, Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells. International Journal of Solids and Structures, Vol. 42, 6032-6047, 2005.
    [9] C.Q. Ru, Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube. Journal of Applied Physics, Vol. 87, 7227-7231, 2000.
    [10] C.P. Wu, C.H. Lin, Y.M. Wang, Nonlinear finite element analysis of a multiwalled carbon nanotube resting on a Pasternak foundation. Mechanics of Advanced Material and Structures, Vol. 26, 1505-1517, 2019.
    [11] B. Fang, Y.X. Zhen, C.P. Zhang, Y. Tang, Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory. Applied Mathematical Modelling, Vol. 37, 1096-1107, 2013.
    [12] J. Yoon, C.Q. Ru, Vibration of an embedded multiwall carbon nanotube. Composites Science and Technology, Vol. 63, 1533-1542, 2003.
    [13] Q. Wang, V.K. Varadan, Wave characteristics of carbon nanotubes. International Journal of Solids and Structures, Vol. 43, 254-265, 2006.
    [14] C.M. Wang, V.B.C. Tan, Y.Y. Zhang, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. Journal of Sound and Vibration, Vol. 294, 1060-1072, 2006.
    [15] K.Y. Xu, E.C. Aifantis, Y.H. Yan, Vibrations of Double-Walled Carbon Nanotubes With Different Boundary Conditions Between Inner and Outer Tubes. Journal of Applied Mechanics, Vol. 75, 021013, 2008.
    [16] H. Ehteshami, M.A. Hajabasi, Analytical approaches for vibration analysis of multi-walled carbon nanotubes modeled as multiple nonlocal Euler beams. Physica E, Vol. 44, 270-285, 2011.
    [17] J. Yoon, C.Q. Ru, Timoshenko-beam effects on transverse wave propagation in carbon nanotubes. Composites Part B: Engineering, Vol. 35, 87-93, 2004.
    [18] Y.G. Hu, K.M. Liew, Q. Wang, Nonlocal elastic beam models for flexural wave propagation in double-walled carbon nanotubes. Journal of Applied Physics, Vol. 106, 044301, 2009.
    [19] L.L. Ke, J. Yang, S. Kitipornchai, Dynamic Stability of Functionally Graded Carbon Nanotube-Reinforced Composite Beams. Mechanics of Advanced Materials and Structures. Mechanics of Advanced Materials and Structures, Vol. 20, 28-37, 2013.
    [20] S. Seifoori, F. Abbaspour, E. Zamani, Molecular dynamics simulation of impact behavior in multi-walled carbon nanotubes. Superlattices and Microstructures, Vol. 140, 106447, 2020.
    [21] G.S. Lee, C.C. Ma, Transient elastic waves propagating in a multi-layered medium subjected to in-plane dynamic loadings I. Theory. Proceedings of the royal society A, Vol. 456, 1355-1374, 2000.
    [22] Y.C. Su, C.C. Ma, Theoretical analysis of transient waves in a simply-supported Timoshenko beam by ray and normal mode methods. International Journal of Solids and Structures, Vol. 48, 535-552, 2011.
    [23] H. Dubner, J. Abate, Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. Journal of the Association for Computing Machinery, Vol. 15, 115-123, 1968.
    [24] F. Durbin, Numerical inversion of Laplace transform: an efficient improvement to Dubner and Abate’s method. The Computer Journal, Vol. 17, 371-376, 1974.
    [25] G.V. Narayanan, D.E. Beskos, Numerical operational methods for time-dependent linear problems. International Journal for Numerical Methods in Engineering, Vol. 18, 1829-1845, 1982.
    [26] A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, Vol. 54, 4703, 1983.
    [27] A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity. International Journal of Engineering Science, Vol. 10, 233-248, 1972.
    [28] Q. Wang, Wave propagation in carbon nanotubes via nonlocal continuum mechanics. Journal of Applied Physics, Vol. 98, 124301, 2005.
    [29] W. X. Bao, C.C. Zhu, W.Z. Cui, Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics. Physica B, Vol. 352, 156-163, 2004.
    [30] M. Rahmandoust, A. Ochsner, On Finite Element Modeling of Single- and Multi-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, Vol. 12, 8129-8136, 2012.
    [31] A. Ghavamian, M. Rahmandoust, A. Ochsner, On the determination of the shear modulus of carbon nanotubes. Composites Part B: Engineering, Vol. 44, 52-59, 2013.
    [32] C. P. Wu, J. J. Yu, A review of mechanical analyses of rectangular nanobeams
    and single-, double-, and multi-walled carbon nanotubes using Eringen’s nonlocal elasticity theory. Archive of Applied Mechanics, Vol. 89, 1761-1792, 2019.
    [33] Y. C. Su, C. Y. Cho, Free vibration of single-walled carbon nanotube based on the nonlocal Timoshenko beam model. Department of Civil Engineering National Cheng Kung University, 2021.

    下載圖示 校內:2024-09-02公開
    校外:2024-09-02公開
    QR CODE