簡易檢索 / 詳目顯示

研究生: 蘇信旗
Su, Shin-Chi
論文名稱: 鈀銀/多孔性不銹鋼複合膜之合成與氣體透過
Synthesis and Gas Permeation of PdAg Composite Membrane
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 114
中文關鍵詞: 無電鍍逐層析鍍電泳鈀銀奈米微粉氫氣透過鈀銀複合膜
外文關鍵詞: electroless deposition, PdAg nanoparticle, Palladium-silver alloy composite membrane, electrophoretic deposition
相關次數: 點閱:142下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究利用電泳(EPD)及無電鍍(EP)技術製備鈀銀合金/多孔不銹鋼(PdAg Alloy/PSS)複合膜,並探討複合膜之微結構及熱處理條件對於氫、氮氣體透過之影響。
      首先,在修飾過之多孔不鏽鋼基材上直接電泳沈積鈀銀層,形成EPD PdAg/PSS複合膜,電泳時在外加定電壓50V下,鍍覆10分鐘,可得一厚度約5μm之鈀銀膜層;再經過10%氫氮混合氣氛、400℃下鍛燒3小時後,可得鈀銀合金相。另外,由氣體透過結果可知,在上游壓力為40~180kPa,氣體透過溫度為300℃時,此複合膜之氫/氮選擇率在3.21-3.45間,顯示鈀銀合金膜層有針孔(pinhole)存在,故氫氣透過複合膜之機制仍以Knudsen擴散和黏性流動(viscous flow)為主。
    其次,以電泳法取代傳統敏化活化程序來鍍覆鈀活化層(約0.1μm),再利用無電鍍法逐次鍍覆鈀、銀層,形成EP PdAg/ EPD Pd/PSS複合膜,並經10%氫氮混合氣氛、500℃下鍛燒24小時,以使鈀銀膜層形成合金相。實驗結果發現,表面鈀銀膜層仍有針孔(pin-hole)存在,其氫/氮選擇率大抵在3.15-3.84之間,與前述直接電泳鈀銀層之EPD PdAg/PSS複合膜相當。由此推論,電泳活化層之鈀晶粒雖降至奈米尺寸,但並未能明顯提高後續鈀銀膜層之緻密性,其原因帶進一步探討。

      In this study, palladium-silver alloy/ porous stainless steel (PdAg alloy/PSS) composite membranes were prepared by electrophoretic deposition (EPD) and electroless plating (EP). The influences of microstructure and heat treatment of the prepared membranes were investigated.
    At first, the EPD PdAg/PSS composite membrane was obtained by electrophoretically depositing PdAg layer onto the modified PSS substrate. At bias of 50 V for 10 minutes, a PdAg layer was formed with a thickness of 5μm, which was then annealed to become PdAg alloy layer at 400oC for 3 hours in a 10% H2/N2 atmosphere. Furthermore, H2/N2 permselectivities of the composite membranes were in the range of 3.21-3.45 at 300oC and upstream pressures of 40-180 kPa. However, the existence of many pinholes in the PdAg layer causes the permeation of gases by Knudsen diffusion and Poiseuille flow, leading to the low H2/N2 permselectivity.
      Alternatively, instead of conventional sensitization-activation process, the EPD technique was employed to deposit an activation layer of Pd onto the modified PSS substrate. Then, the PdAg layer was deposited by the sequential EP technique to obtain the EP PdAg/EPD Pd/PSS composite membrane. Similarily, a PdAg alloy layer was formed after annealng the membrane at 500oC in a 10% H2/N2 atmosphere for 24 hours. The experimental result showed that the H2/N2 permselectivities were almost in the range of 3.15-3.84 with the fact of many voids left in the surface of PdAg alloy layer. This result was very close to that obtained from the EPD PdAg/PSS composite membrane. Eventually, the Pd grain of the activated EPD Pd layer was reduced to the size of nanometer, the denseness of the following deposited PdAg layer could not be obviously increased. The true reason needs to be investigated in advance.

    總 目 錄 中文摘要 -------------------------------------------------------------Ⅰ 英文摘要 -------------------------------------------------------------Ⅱ 誌謝 -----------------------------------------------------------------Ⅲ 總目錄 ---------------------------------------------------------------IV 表目錄 ---------------------------------------------------------------Ⅶ 圖目錄 ---------------------------------------------------------------Ⅷ 符號說明 -------------------------------------------------------------XII 第一章 緒論 ----------------------------------------------------------1 1.1簡介 --------------------------------------------------------------1 1.1.1氫氣的應用與介紹 ------------------------------------------------1  1.1.2無機膜簡介 --------------------------------------------------2 1.1.3鈀合金膜之簡介 --------------------------------------------------2 1.1.4複合膜之要求 ----------------------------------------------------3 1.2各式複合膜之製備方法 ----------------------------------------------5 1.3無電鍍鈀銀複合膜之發展 ------------------------------------------9 1.4研究目的與內容 ----------------------------------------------------10 第二章 原理 ----------------------------------------------------------13 2.1水相化學還原法簡介 ---------------------------------------------13 2.2成核成長機制 ---------------------------------------------------14 2.3無電鍍法 -------------------------------------------------------17 2.4電泳沈積 -------------------------------------------------------18 2.5奈米粒子熱學性質 -----------------------------------------------22 2.6質傳定律 -------------------------------------------------------22 2.7鈀銀複合膜之氣體透過行為 ---------------------------------------23 2.7.1孔洞中的氣體擴散 -------------------------------------------23 2.7.2氫氣在鈀銀膜中的透過 ---------------------------------------26 第三章 實驗部分 ------------------------------------------------------34 3.1藥品 -----------------------------------------------------------34 3.2儀器及分析方法 -------------------------------------------------35 3.3實驗方法及步驟 -------------------------------------------------36 3.3.1不鏽鋼基材拋光和修飾 ---------------------------------------37 3.3.2電泳法製備鈀銀薄膜 -----------------------------------------38 3.3.3以無電鍍法製備鈀銀複合膜 -----------------------------------39 3.3.4鈀銀複合膜之熱處理 -----------------------------------------40 3.3.5複合膜之特性分析 -------------------------------------------41 3.3.6氣體透過實驗 -----------------------------------------------41 第四章 結果與討論 ----------------------------------------------------47 4.1.1多孔性不鏽鋼基材之修飾 -------------------------------------47 4.1.2不銹鋼基材氣體透過 ----------------------------------------------48 4.2電泳法製備鈀銀複合膜 ----------------------------------------------49 4.2.1電泳層鈀銀比例 ---------------------------------------------49 4.2.2鈀銀層之表面型態 -------------------------------------------50 4.2.3電泳後續修飾 -----------------------------------------------51 4.2.4熱處理對於晶相及表面探討 ----------------------------------------52 4.2.5鈀銀複合膜氣體透過實驗 ------------------------------------------53 4.3電泳後續熱處理修飾 ---------------------------------------------54 4.3.1以無電鍍法鍍覆一銀層銀層於電泳鈀層上 -----------------------54  4.4.以電泳法製備鈀銀薄膜結論 --------------------------------------55 4.5 以電泳鈀為活化層 ----------------------------------------------56 4.5.1 以電泳鈀為活化層再後續逐層無電鍍鈀銀膜 --------------------57 4.5.2 熱處理對合金相以及表面型態影響 ----------------------------57 4.5.3 以電泳鈀為活化層再後續四層逐層無電鍍鈀銀 ------------------58 4.6 以蒸鍍為活化層 ------------------------------------------------59 4.7 綜合討論 ---------------------------------------------------------60 第五章 結論與建議 ----------------------------------------------------103 參考文獻 -------------------------------------------------------------106

    [1]C. S. Jun, K. H. Lee , “Palladium and palladium alloy composite membrane prepared by metal-organic chemical vapor deposition method,” J. Membr. Sci. 176 (2000) 121-130.
    [2]J. Galuszka, R. N. Pandey, S. Ahmed, “Methane conversion to gas in a palladium membrane reactor,” Catal.. Today. 46 (1998) 83-89.
    [3]G.. Barbieri, V. Violante, F. P. D. Maio, A. Crisuoli, E. Drioli,“Methane steam reforming analysis in a palladium-based catalytic memebrane reactor” Ind. Eng. Chem. Res. 36 (1997) 3369-3374.
    [4]N. Jemaa, J. Shu, S. Kaliaguine, and B. P. A, “Thin palladium film formation on shot peening modified porous stainess steel substrate,” Ind. Eng. Chem. Res. 35 (1996) 973-977.
    [5]V. Jayraman , Y. S. Lin, M. Pakala, R. Y. Lin, “Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition,” J. Membr. Sci. 99 (1995) 89-100.
    [6]Y. Cao, B. Liu, J. Deng, “Catalytic dehydrogenation of ethanol in Pd-M/γ-Al2O3 composite membrane reactors,” Appl. Catal. A154 (1997) 129-138.
    [7]V. Ayraman, Y. S. Lin, “Synthesis and hydrogen permeation properties of ultra thin palladium-silver alloy membranes,” J. Membr. Sci. 104 (1995) 251-262.
    [8]C. S. Jun, K. H. Lee, “Preparation of palladium membranes from the reaction of Pd(C3H3)(C5H5) with H2: wet-impregnated deposition,” J. Membr. Sci. 157 (1999) 107-115.
    [9]H. Amandusson, L. G.Ekedahl, H. Dannetun, “Hydrogen permeation through surface modified Pd and PdAg membranes,” J. Membr. Sci. 193 (2001) 35-47.
    [10]S. E. Nam, K. H. Lee, “A study on the palladium/nickel composite membrane by vacuum electrodeposition,” J. Membr. Sci. 170 (2000)
    91-99.
    [11]J. P. Collins, J. D. Way, “Preparationand characterization of a composite palladium-ceramic membrane,” Ind. Eng. Chem. Res. 32 (1993) 3006-3013.
    [12]J. Tong, Y. Matsumura, “Thin Pd membrane prepared on macroporous stainess steel tube filter by an in-situ multi-dimensional plating mechanism,” Chem. Commun. (2004) 2460-2461.
    [13]Y. M. Lin, G. L. Lee, M. H. Rei, “An nitrated purification and production of hydrogen with a palladium membrane-catalytic reactor,” Catal. Today 44 (1998) 343-349.
    [14]H. B. Zhao, G. X. Xiong, G. V. Baron, “Preparation andcharacterization of palladium-based composite membranes by electroless plating and magnetron sputtering,” Catal. Today 56 (2000) 89-96.
    [15]J. Shu, A. Adnot, B. P. A. Grandjean, S. Kaliagunie, “Strcturally stable composite Pd-Ag alloy membranes: Introduction of a diffusion barrier,” Thin Solid Films 286 (1996)72-79.
    [16]J. Deng, Z. Cao, B. Zhou, “Catalytic dehydrogenation of ethanol in a metal-modified membrane reactor,” Appl. Catal. A132 (1995) 9-20.
    [17]J. N. Keuler, L. Lorenzen, “Developing a heating procedure to optimize hydrogen permeace through Pd-Ag membrane of thickness less than 2.2μm,” J. Membr. Sci. 196 (2002) 203-213.
    [18]S. E. Nam, K. H. Lee, “Hydrogen separation by Pd alloy composite membranes: introduction of diffusion barrier,” J. Membr Sci.. 192 (2001) 177-185
    [19]T. C. Huang, M. C. Wei, H. I. Chen, “Preparation of hydrogen-permselective palladium-silver alloy composite membranes by electroless co-deposition,” Sep. and Purif. 32 (2003) 239-245.
    [20]J. N. Keuler, L. Lorenzen, R. D. Sanderson, V. Prozesky, W. J. Przybylowicz, “Characterization of electroless plated palladium-silver alloy membranes,” Thin Solid Films 347 (1999)91-98.
    [21]D. Wang, J. Tong, H. Xu, Y. Matsumura, “Preparation of palladium membrane over porous stainess steel tube modified with zirconium oxide,” Catal. Today 93-95 (2004) 689-693.
    [22]J. Tong, L. Su, Y. Kashima, R. Shiral, H. Suda, Y. Matsumura, “Simultaneously depositing PdAg thin membrane on asymmetric porousstainess steel and application to produce hydrogen” from steam reforming of methane,” Ind. Eng. Chem. Res. 45 (2006) 648-655.
    [23]W. H. Lin, H. F. Chang, “Characteriztionof PdAg membrane prepared by sequential electroless deposition,” Surf. Coating Tech. 194 (2005) 157-166.
    [24]J. P. Collins,J. D. Way, “Prepared and characterizationof a composite palladium-ceramic membrane,” Ind. Eng. Chem. Res. 32 (1993) 3006-3013.
    [25]S. Tosti, L. Bettinali, S. Castelli, F. Sarto, S. Scaglione, V. Violante “Sputtered,electroless, and rolled palladium-ceramic membrane,” J. Membr. Sci. 196 (2002) 241-249.
    [26]D. W. Lee, Y. G. Lee, S. E. Nam, S. K. Ihm, K. H. Lee, “Study on the variation of morphology and separation behavior of stainless steel supported membranes at high temperature,” J. Membr. Sci. 220 (2003) 137-153.
    [27]J. Tong, R. Shirai, Y. Kashima, Y. Matsumura, “Preparation of a pin-free Pd-Ag membrane on a porous metal support for pure hydrogen separation,” J. Membr. Sci. 260 (2005) 84-89.
    [28]J. Zhang, D. Liu, M. He, H. Xu, W. Li, “Experimental and simulation studies on concentration polarization in H2 enrichment by highly permeable and selective Pd membranes,” J. Membr. Sci. 260 (2006) 83-91.
    [29]J. Tong, L. Su, K. Haraya, H. Suda, “Thin and defect-free Pd-based composite membrane without any interlayer and substrate,” Chem. Commun. (2006) 1142-1144.
    [30]A. Li, W. Liang, R. Hughes, “Characterization and permeation of palladium/stainless steel composite membranes,” J. Membr. Sci. 149 (1998) 259-268.
    [31]D. Yepes, L. M. Cornaglia, S. Irusta, E. A. Lombardo, “Different oxides used as diffusion barriera in composite hydrogen permeable,” membranes J. Membr. Sci. 274 (2006) 92-101.
    [32]S. Tosti, L. Bettinali, V. Violante. “Rolled thin Pd and Pd–Ag membranes for hydrogen separation and production,” Ind. J. Hydrogen Energy 25 (2000) 319-325.
    [33]J. Shu, B. P. A. Grandjean, S. Kaliaguine, “Asymmtric Pd-Ag Stainess-steel catalic membranes for methane steam reforming,” Catal. Today, 25 (1995) 327-332.
    [34]F. Roa, M. J. Block, D. Way, “The influence of alloy composition on the H2 flux of composite Pd-Cu membranes,” Desalination 147 (2002) 411-416.
    [35]B. A. McCOOL, Y. S. Lin, “Elaboration of the Cu3Si compound using a mechanically activated annealing process,” J. Mater. Sci. 36 (2000) 3221-3227.
    [36]Y. S. Cheng, K. L. Yeung, “Pallidium-silver composite membranes by electroless plating technique,” J.Membr. Sci. 158 (1999) 127-141.
    [37]J. Tong, C. Su, K. Kuraoka, H. Suda, Y. Matsumura, “Preparation of thin Pd membrane on CeO2 modified porous metal by a combined method of electroless plating and chemical vapor deposition,” J. Membr. Sci. 269 (2006) 101-108.
    [38]J. Shu, B. P. A. Grandjean, E.Ghali, S.Kaliaguine, “Simultaneous Deposition OF Pd and Ag on porous stainess-steel by electroless plating,”J. Membr. Sci. 77 (1993) 181-195.
    [39]F. C. Gielens, H. D. Tong, C. J. M. Van Rijn, M. A. G. Vorstman, J. T. F. Keurentjes , “Study on the integrated membrane processes of dehumidification of compressed air and vapor permeation processes,” J. Membr. Sci. 233 (2002) 203-213.
    [40]N. Toshima, T. Yonezawa, “Bimetallic Nanoparticles-novel materials for chemical and physical applications,” New J. Chem. 1179-1201 (1998)
    [41]T. Hyeon, “Chemical synethesis of magnetic nanoparticles,” Chem. Comm. 927-934 (2003)
    [42]C. C. Yang, Y. Y. Wang, C. C. Wan, “Synthesis and characterization of PVP stabilized Ag/Pd nanoparticles and its potential as an activator for electroless copper deposition,” J. Electrochem. Soc. 152 (2005) C96-C100.
    [43]C. Y. Huang, H. J. Chiang, J. C. Huang, S. R. Sheen, “Synthesis of nanocrystalline Ag-Pd alloys by chemical reduction method,” Nanostruct. Mater. 101 (1998) 393-1400.
    [44]T. Kuji, H. Uchida, M. Sato, W. Cui “Thermodynamic properties of hydrogen in fine Pd powders,” J. Alloys and Compd. 293 (1999) 19-22.
    [45]P. Sarkar, D. De, H. Rho, “Synthesis and microstructural manipulation of ceramics by electrophoretic deposition” J. Membr. Sci. 39 (2004) 819-823.
    [46]Material Reserch Bulletin, 36 1049-1055 (2001)
    [47]H. Negishi, K. Yamaji, N. Sakai, T. Horita, H. Yaagishita, H. Yokokawa “Electrophoretic deposition of YSZ powders for solid oxide fuel cells,” J. Membr. Sci. 39 (2004) 833-839.
    [48] I. Zhitomirsky, “Electrolytic TiO2-RuO2 deposits,” J. Mater. Sci. Lett. 31 (1999) 2441-2447.
    [49] Inorganic membranes synthesis, characteristics, and applications, Ramesh R. Bhave.(1991).
    [50]S. Y. Zhao, S. B. Lei, S. H. Chen H. Y. Ma, S. Y. Wang, “Assembly of two dimensional ordered monolayer of nanoparticles by electrophoretic deposition,” Colloid Polym. Sci. 278 (2000) 682-686.
    [51]N. Ogata, J. V. Tassel, C. A. Randall, “Electrode formation by electrophoretic deposition of nanoparticles,” Mater. Lett. 49 (2001) 101-107.
    [52]J. Tabellion, R. Clasen, electrophoretic deposition from aqueous suspensions for near-shape manufacturing advanced ceramics and glasses-applications,” J. Mater. Sci. 39 (2004) 803-811.
    [53]T. Teranishi, M. Hosoe, T. Tanka, M. Miyake, “Size control of mono-disoersed Pt nanoparticles and their 2D organization by electrophoretic deposition,” J. Phys. Chem.B 103 (1999) 3818-3827.
    [54]S. Datta, “Application of design of experiment on electrophoretic deposition of glass-ceramic coating materials from an aqueous bath,” J. Mater. Sci. 23 (2000) 125-129.
    [55]C. A. Randall, J. VanTassel, M. Matsko, C. P. Browen, “Electric field processing of ferroelectric particulate ceramics and composites,” IEEE (2000) 189-192.
    [56]Y. C. Wang, I. C. Leu, M. H. Hon, Preparation of nano-sized ZnO arrays by electrophoretic deposition,” Electrochem. Solid-state Lett. 5 (2002) C53-C55.
    [57]O. Sakurada, K. Suzuki, M. Hashiba, “Bubble-free elelctrophoretic deposition of aqueous zirconia suspension with hydroquinone,” J. Mater. Sci. 39 (2004) 1845-1847.
    [58]A. R. Boccaccini, U. Schindler, H. G. Kruger, “Ceramic coatings on carbon and metalkic fibres by electrophoretic deposition,” Mater. Lett. 51 (2001) 225-230.
    [59]A. M. Affoune, B. L. V. Praasd, H. Sato, T. Enoki, “Electrophoretic deposition of nanosized diamond particles,” Langmuir, 17 (2001) 547-551.
    [60]B. Ferrari, A. J. S. Herencia, R. Moreno, “Aqueous electrophoretic deposition of Al2O3/ZrO2 layered ceramics,” Mater. Lett.. 35 (1998) 370-374.
    [61]Y. C. Wang, I. C. Leu, M. H. Hon, “Preparation and characterization of nanosized ZnO arrays by electrophoretic deposition,” J. crystal growth. 237 (2002) 564-568.
    [62]S. Put, J. Vleugels, O. V. Biest, “Microstructural engineering of functionally graded materials by electrophoretic deposition,” J. Mater. Process. tech. 143-144 (2003) 572-577.
    [63]J. Migzuguchi, K. Sumi, T. Muchi, “A high stable non-aqueous suspension for the electrophoretic deposition of powered substances,” J. Electrochem. Soc. 17 (1997) 549-556.
    [64]A. M. Affoune, B. L. V. Prasad, H. Sato, T. Enoki, “Electrophoretic deposition of nanosized diamond particles,” Langmuir 17 (2001) 547-551.
    [65]M. A. Vairavamurthy, W. S. Goldenberg, S. Ouyang and S. Khalid, ” The interaction of hydrophilic thiols with cadmium: investigation with a simple model, 3-mercaptopropionic acid,”Mar. Chem. 70 (2000) 181-189.
    [66]D. L. Klayman, T. S. Griffin, J. Am. Chem. Soc., 95(1) (1973) 197-199.
    [67] P. Y. Silvert, V. Vijayakrishan “Synthesis and characterization of nanoscale Ag-Pd alloy particles,” Nanostruct. Mater. 7 (1996) 611-618.
    [68]J. W. Mullin, “Crystallization,” Butterworth-Heinemann, Boston, (1993).
    [69]C. B. Murray, C. R. Kagan and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1) (2000) 545-610.
    [70]黃忠良, 精密陶瓷材料概念, 復漢出版社, 2001年, 台南.
    [71]朱秦億, 鈀及鈀銀複合膜之製備特性分析及其氫氮選透性, 國
    立成功大學化學工程學系碩士論文(2004)
    [72]張耿豪, 以無電鍍逐層法製備氫氣選透性鈀銀膜, 國立成功大
    學化學工程學系碩士論文(2004)
    [73]王鉦源, 以化學還原法製備奈米級鈀銀微粉, 國立成功大學化
    學工程學系碩士論文(2000)
    [74]翁鋕榮 電泳沉積法(EPD)在釔安定氧化鋯(YSZ)薄膜化之研究,
    國立成功大學材料科學及工程學系碩士論文(2005)
    [75]劉佳玟 奈米二氧化鈦電泳沉積及其性質, 國立成功大學材料科學及工程學系碩士論文 (2004)
    [76]奈米材料與技術講義, 陳東煌老師 成功大學化學工程研究所2006
    [77]黃錦鐘, 粉末冶金, 高立圖書有限公司 1996年,台北
    [78]E. Kissa, Dispersion characterization, testing, and measurement, Marcel Dekker, New York
    [79]C. Y. Huang, H. J. Chiang, J. C. Huang, S. R. Sheen “Synthesis of nanocrystalline Ag-Pd alloys by chemical reduction method,” Nanostruct. Mater. 10 (1998) 1393-1400.
    [80]A. G. Knapton, Platin. Met. Rev. 21(2) (1977) 44-50.
    [81]K. L. Yeung, S. C. Christiansen, and A. Varama, “Palladium composite membranes by electroless plating technique Relationships between plating kinetics film microstructure and membrane performance,” J. Membr. Sci. 159 (1999) 107-111.
    [82]Y. S. Cheng, K. L. Yeung, “Effects of electroless plating chemistry on the synthesis of palladium membranes,” J. of Membr. Sci. 182 (2001) 195-203.
    [83]J. Shu, B. P. A. Grandiean, E.Ghali,S.Kaliaguine “Simultaneous deposition of Pd and Ag on porous stainless steel by electroless plating,” J Membr. Sci. 77 (1993) 181-195.
    [84]J. A. Lewis, “Colloidal processing of ceramics, ”J. Am. Ceram. Soc. 83 (2000) 2341-2359.

    下載圖示 校內:2007-09-08公開
    校外:2007-09-08公開
    QR CODE