| 研究生: |
邱致銘 Chiu, Chih-Ming |
|---|---|
| 論文名稱: |
可溶性聚醯亞胺/二氧化矽奈米複合材料之合成與性質研究 Synthesis and Characterization of Soluble Polyimide/Silica Nanocomposites |
| 指導教授: |
蔡三元
Tsay, San-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 可溶性聚醯亞胺 、二氧化矽 、奈米複合材料 |
| 外文關鍵詞: | Nanocomposites, Silica, Organosoluble polyimide |
| 相關次數: | 點閱:65 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗擬合成含羥基及懸掛芳香環二胺類4-4’-二胺基-4”-羥基三苯基甲烷(DHTM)和芳香族二酸酐3,3’4,4’-二苯甲酮四羧酸二酐(BTDA)、3,3’,4,4’-二苯醚四羧酸二酐(OPDA)及苯均四酸酐(PMDA)以溶液環化法合成可溶性聚醯亞胺。比較其機械性質、耐熱性質等物性。溶液-凝膠反應選擇(PMDA+DHTM)作為聚合物主體。加入二氧化矽以三種方式進行之,第一種方式為將預先配製好的四乙基矽烷氧(TEOS)、水及鹽酸的水解液直接加入聚合物溶液中;第二種方式以偶合劑3-甘油基丙基三甲基矽烷氧(GPTMOS)加入水解液,再將此混合入聚醯亞胺溶液中;第三種方式將偶合劑GPTMOS置入聚合物溶液中,預先反應形成偶合的聚合物前驅物,再將水解液加入反應。形成之複合溶液均以階段升溫的方式成膜,合成的複合薄膜以FT-IR分析其結構;以TGA、DSC及DMA測定其熱性質;SEM觀察其聚合物的形態,同時以萬能拉力機測定複合物的應力及模數,並以UV/vis測定透光性。比較此三種方式形成聚醯亞胺-二氧化矽奈米複合材料,以第三種方式為改善有機相與無機相相容性的最佳複合膜。
In this thesis, we will synthesis a diamine 4,4’diamino-4”-hydroxytri phenylmethane(DHTM) which contain a pendant phenyl group and a hydroxy group on it. A series of soluble polyimides will be synthesized from DHTM and aromatic dianhydrides such as 3,3’,4,4’-benzophenone tetracarboxylic dianhydride(BTDA)、4,4’-oxydiphthalic anhydride (OPDA) and pyrromellitic dianhydride (PMDA) via solution imidization method. Comparing with their mechanical and physical properties and selecting polymer PMDA+DHTM as polymer matrix in the sol-gel process. Adding silica nanoparticles into poly -mer matrix is carrying out in three kinds of way. First, preparing hydrolyzed solution which contain tetraethoxysilane(TEOS)、water and hydrochloride, then pour this hydrolyte into polymer solution. The second method is adding coupling agent 3-glycidoxypropyltrimethoxysilnae(GPTMOS) into hydro -lyzed solution, then pour this mixed solution into polymer solution. Third, couping agent could react with polymer solution to become a precursor first. Then hydrolyzed solution add into this precursor to form polymer gel. All these three hybrid solution are spin coating on glass substrate and gelation by step temperature raising. The final polymer nanocomposites will be subjected by FT-IR and element analysis to characterize the structure. The morphology will be investigated by SEM while the thermal properties will be measured by TGA DSC DMA. We will also study the mechanical properties by universal instron and the transparency of the hybrid film by UV/vis spectra. Comparing all the properties of these three kinds of hybrid flim, we find the third kind of nanocompostie exhibit the best properties due to the improvement of compatibility between polyimide and SiO2.
1. M. T. Bogert, R. R. Renshaw, J. Am. Chem. Soc., 30, 1140(1908)
2. W. M., I. M. Robinsin, British Pat. 570858; U.S. Pat. 2710853(1955)
3. M. K. Ghosh, K. L. Mittal,“Polyimide, Fundamentals and applications” 1-6,Marcel Dekker Inc. (1996)
4. 林金雀,聚醯亞胺薄膜全球市場及應用現況,化工資訊月刊,13, 7, 58~62(1999)
5. 顏慶山,全芳香族聚醯亞胺的加工與應用,高分子工業,No.77,73-79(1998)
6. 金進興,聚醯亞胺在IC元件之應用,工業材料,No.114,118-125(1996)
7. G. Samnelson,Polyimides for multilevel VLSI and α protection. In: Short Course on Polyimides for Microelectronic Application at UC at Berkley (1981)
8. D. Makino,Application of Polyimides to Microelectronics. In: Thompson L F, Willame C G et al. Polymers for Microelectrinics, ACS Ser. Chapter 26,537 (1994)
9. J. Cech, A. Burnett, C. P. Chien et al,Processing Solutions for Thin Film MCMs, EP&P. 4:12 (1994)
10. 江選雅,聚醯亞胺的合成及其在LCD上的應用,化工資訊,13, 7, 43-53 (1999)
11. 林景正、賴宏仁,奈米材料技術與發展趨勢,工業材料,9 (1999)
12. A. Henglein,Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles ,Chem. Rev. 89, 1861-1873 (1989)
13. W. Jianye, L. W. Garth,Organic/Inorganic hybrid network materials by the Sol-Gel approach,Chem. Mater. 8, 1667-1681 (1996)
14. Y. Chujo et al., Makromol. Chem., Macromol. Symp. 42/43, 303 (1991)
15. L. Mascia, A. Kioul,Influence of siloxane composition and morphology on properties of polyimide-silica hybrids ,Polymer 36(19), 3649-3659 (1995)
16. M. A. Harmer, W. E. Farneth, Q. Sun,High Surface Area Nafion Resin/Silica Nanocomposites: A New Class of Solid Acid Catalyst,J. Am. Chem. Soc. 118, 91, 7708-7715 (1996)
17. R. Tamki, K. Naka, Y. Chujo, Polymer Bulletin 39, 303 (1997)
18. Y. Imai, N. Yoshida, Y. Chujo, Polymer Journal 31, 258 (1999)
19. A. Morikawa, Y. Iyoku, M. Kamimoto, Y. Imai, Polym. J., 24(1), 107(1992)
20. Y. Charlier, J. L. Hedrick, T. P. Russel, A. Jonas, W. Volksen,High temperature polymer nanofoams based on amorphous, high Tg polyimides,Polymer 36(5), 987-1002 (1995)
21. Z. Ahmad, J. E. Mark,Polyimide-Ceramic Hybrid Composites by the Sol-Gel Route,Chem. Mater. 13, 3320-3330 (2001)
22. K. Yano, A. Usuki, A. Okada,Synthesis and properties of polyimide-clay hybrid films,J. Polym. Sci., Polym. Part A:Polym. Chem., 35(11), 2289-2294 (1997)
23. T. T. Serafini, P. Delvig, G. R. Lightsey, J. Appl. Polym. Sci., 16,905(1972)
24. J. K. Sutter, J. F. Water, M. A. Schuerman, ACS Polym. Prep., 33,366(1992)
25. N. A. Adrova, M. I. Bessonov, L. A. Laius, A. P. Rudakov, “Polyimide:A new class of thermally stable polymers(in Russian)”,Nauka,Leningrad (1968)
26. R. A. Dine-Hart, W. W. Wright,Preparation and fabrication of romatic polyimides,J. Appl. Polymer Sci. 11, 609~627 (1967)
27. X.-Q. Liu, M. Jikei, M. Kakimoto,Synthesis and Properties of AB-Type Semicrystalline Polyimides Prepared from Polyamic Acid Ethyl Ester Precursors,Macromolecules 34, 3146-3154 (2001)
28. T. Takekoshi, J. E. Kochanowski,US patent. 3,905,942,General Electric Co. (1975)
29. G. D. Khune,Preparation and properties of polyimides from diisocyanates,J. Macromol. Sci.,Polym. Chem. Ed. 18, 6, 1905-1909 (1980)
30. M. L. Bender, Y-L. Chow, F. Chloupek,Intramolecular Catalysis of Hydrolytic Reactions. II. The Hydrolysis of Phthalamic Acid,J. Am. Chem. Soc. 80, 5380-5384 (1958)
31. J. A. Kreuz, J. Polym. Sci. Part A:Polym. Chem. 28,3787 (1990)
32. R. J. W. Reynold, J. D. Saddon, J. Polym. Sci. ,C23,45,(1968)
33. P.-R. Young, A.-C. Chang,Characterization of a thermally imidized soluble polyimide film,J. Polym. Sci. Part A:Polym. Chem. 28, 3107~3122 (1990)
34. J.Malinge、J.Garapon and B.Sillion,New developments in polybenzhydrolimide resins:Application in the field of heat resistant coatings,adhesives and laminates,British Polym. J.,Vol.20,431~439 (1988)
35. H.-J. Lee et al.,Synthesis and properties of nonlinear optical side chain soluble polyimides for photonics applications,J. Polym. Sci. Part A Polym. Chem. 36(2), 301-307 (1998)
36. G. L. Tullos, L. J. Mathias,Unexpected thermal conversion of hydroxy-containing polyimides to polybenzoxazoles,Polymer 40(12), 3463-3468 (1999)
37. G. L. Tullos, L. J. Mathias et al.,Thermal Conversion of Hydroxy-Containing Imides to Benzoxazoles: Polymer and Model Compound Study, Macromolecules 32, 3598-3612 (1999)
38. M. Udea, T. Nakama,A New Negative-Type Photosensitive Polyimide Based on Poly(hydroxyimide), a Cross-Linker, and a Photoacid Generator ,Macromolecules 29, 6427-6431 (1996)
39. P. Guadarrama et al.,Polymer Journal 31, 5, 423 (1999)
40. 日本特開平 JP10-237029 (1998)
41. Y. J. Kim, T. E. Glass, G. D. Lyle and J. E. Mcgrath,Kinetic and mechanistic investigations of the formation of polyimides under homogeneous conditions,Macromolecules 26,1344-1358 (1993)
42. T. M. May, C. D. Deporter, J. E. Mcgrath,Polymer 34,819(1993)
43. A. G. Endry, US Pat. 317630 ; 317631; 317632
44. C. J. Brinker, G. W. Scherrer, “Sol-Gel Science, the Physics and Chemistry of Sol-Gel processing” Academic Press (1990)
45. S. Wang, Z. Ahmad, J. E. Mark,Polyimide-Silica Hybrid Materials Modified by Incorporation of an Organically Substituted Alkoxysilane,Chem. Mater. 6, 943-946 (1994)
46. Sysel, P.; Pulec, R.; Maryska, M., Polym. J. 29, 607 (1997)
47. L. Mascia, A. Kioul,Influence of siloxane composition and morphology on properties of polyimide-silica hybrids ,Polymer 36(19), 3649-3659 (1995)
48. Menoyo, J. D.; Mascia, L.; Shaw, S. J., Mater. Res. Soc. Symp. Proc. 520, 239 (1998)
49. J. C. Chris, M. Eva,Hybrid inorganic–organic materials based on a 6FDA–6FpDA–DABA polyimide and silica: physical characterization studies,Polymer 43(8), 2385-2400 (2002)
50. X.-Y. Shang, Z.-K. Zhu et al.,Compatibility of Soluble Polyimide/ Silica Hybrids Induced by a Coupling Agent,Chem. Mater. 14, 71-77 (2002)
51. Kim, Y., Lee, W. K.; Cho, W. J.;Ha, C. S., Polym. Int. 43, 129 (1997)
52. M.-H. Tsai, W.-T. Whang,Low dielectric polyimide poly- (silsesquioxane)-like nanocomposite material, Polymer 42(9), 4197-4207 (2001)
53. C.-C. Chang, W.-C. Chen,Synthesis and Optical Properties of Polyimide-Silica Hybrid Thin Films,Chem. Mater. 14, 4242-4248 (2002)
54. M. Yoshida, M. Lal, N. D. Kumar, P. N. Prasad,TiO2 nano-particle-dispersed polyimide composite optical waveguide materials through reverse micelles,J. Mater. Sci. 32, 4047 (1997)
55. Li Liu, Q.-H. Lu et al., Photosensitive polyimide(PSPI) materials containing inorganic nanoparticles(I) PSPI/TiO2 hybrid materials by sol-gel process,Mater. Chem. Phys. 74, 210-213 (2002)
56. Li Liu, Q.-H. Lu et al.,Preparation and properties of photosensitive polyimide/titania-silica hybrid materials,Mater. Sci. Eng. C 22, 61-65 (2002)
57. C.-L. Chiang, C.-C. M. Ma, D.-L. Wu, H.-C. Kuan,Preparation, characterization, and properties of novolac-type phenolic/SiO2 hybrid organic-inorganic nanocomposite materials by sol-gel method,J. Polym. Sci. Part A :Polym. Chem. 41(7),905-913 (2003)
58. Y. Cui, Y. Ni,Preparation of N,N-diphenol toluene,Synthetic Communications 31(2), 257-261 (2001)
59. M. Ueda, T. Nakayama,A New Negative-Type Photosensitive Polyimide Based on Poly(hydroxyimide), a Cross-Linker, and a Photoacid Generator ,Macromolecules 29, 6427-6431 (1996)
60. P. Guadarrama, L. Fomina, V. Pankov, W. Matus, S. Fomine, Polymer Journal 31(5),423-428(1999)
61. Y. Huang, Y. Gu,New polyimide-silica organic-inorganic hybrid,J. App. Polym. Sci. 88, 2210-2214(2003)
62.丁孟賢,何天白, 聚醯亞胺新型材料, 科學出版社(1998)